Selective Recognition and Asymmetric Catalysis
A R T I C L E S
Scheme 1. Chiral Primary Amine Catalyzed Asymmetric Direct
molecules. Moreover, systematic mechanism studies with the
aid of typical host-guest analyzing techniques such as X-ray
crystallography, NMR, UV, CD, and fluorescence spectroscopy
reveal some catalytic features resembling those of the enzyme
catalysis: (1) substrates binding Via cooperative noncovalent
interactions such as hydrophobic effect, hydrogen bonding, or
electrostatic interaction; (2) recognition induced conformation
changes of the host molecule that favor the catalysis; and (3)
stereocontrol Via synergistic interactions of chiral host and side
chains. The details of the mechanism studies as well as the
synthetic scopes and limitations of the current asymmetric
supramolecular catalyst are also presented.
Aldol Reactions
design is based on the considerations that (1) cyclodextrins are
readily available and have been extensively explored as
enzymatic mimics in aqueous buffer;8 (2) in particular, cyclo-
dexdrin derivatives have already been examined as enamine or
enol-based aldolase mimics;9 (3) moreover, native cyclodextrins
together with derivatives have been proven to be feasible
asymmetric catalysts in photocatalytic reactions with moderate
to high enantioselectivity;4f,j,l,17b,c and (4) recently, the use of
cyclodextrins as an immobilizing host in asymmetric aldol
catalysis has also been attempted in a few studies.10 Based on
our previous research on chiral primary amine catalysis, a
cyclohexadiamine skeleton is selected as the primary aminocata-
lytic motif because of its simple structure and high reactivity
as well as selectivity.7a-c,m
Supramolecular chiral diamine CD-1 to CD-6 were readily
synthesized by nucleophilic substitution of mono-(O-6-tosyl)-ꢀ-
cyclodextrin with corresponding diamine in DMF at 80 °C under
an argon atmosphere as previously described (Scheme 2).11 After
precipitation with a large quantity of actone, pure products could
be obtained in gram scale. Unlike native ꢀ-cyclodextrin, all the
compounds are very soluble in water, which makes them suitable
for catalytic applications in aqueous media.
Results and Discussions
1. Design and Synthesis of Catalysts. Simple chiral primary
amines (e.g., 7) have recently been reported to serve as efficient
enamine-type catalysts that mechanistically and functionally
resemble the lysine-based aldolases (Scheme 1).7 It is envisioned
that efficient and biomimetic asymmetric supramolecular ca-
talysis may be evolved by covalently connecting the established
primary aminocatalytic motif with a chiral supramolecular host.
To achieve this, we have chosen the simple natural cyclodextrins
(CD) among several prominent supramolecular hosts. This
(4) For asymmetric supramolecular catalysis with moderate enantiose-
lectivity in aqueous media, see: ref 8g and (a) Fasella, E.; Dong, S. D.;
Breslow, R. Bioorg. Med. Chem. 1999, 7, 709–714. (b) Rousseau, C.;
Christensen, B.; Bols, M. Eur. J. Org. Chem. 2005, 2734–2739. (c)
Reddy, M. A.; Bhanumathi, N.; Rao, K. R. Chem. Commun. 2001,
1974–1975. (d) Suresh, P.; Pitchumani, K. Tetrahedron: Asymmetry
2008, 19, 2037–2044. (e) Brown, C. J.; Bergman, R. G.; Raymond,
K. N. J. Am. Chem. Soc. 2009, 131, 17530–17531. For examples of
supramolecular photochirogenesis in aqueous media, see ref 17b, c
and (f) Luo, L.; Liao, G.; Wu, X.; Lei, L.; Tung, C.-H.; Wu, L.-Z. J.
Org. Chem. 2009, 74, 3506–3515. (g) Wada, T.; Nishijima, M.;
Fujisawa, T.; Sugahara, N.; Mori, T.; Nakamura, A.; Inoue, Y. J. Am.
Chem. Soc. 2003, 125, 7492–7493. (h) Nishijima, M.; Wada, T.; Mori,
T.; Pace, T. C. S.; Bohne, C.; Inoue, Y. J. Am. Chem. Soc. 2007, 129,
3478–3479. (i) Nishijima, M.; Pace, T. C. S.; Nakamura, A.; Mori,
T.; Wada, T.; Bohne, C.; Inoue, Y. J. Org. Chem. 2007, 72, 2707–
2715. (j) Lu, R.; Yang, C.; Cao, Y.; Tong, L.; Jiao, W.; Wada, T.;
Wang, Z.; Mori, T.; Inoue, Y. J. Org. Chem. 2008, 73, 7695–7701.
(k) Nishioka, Y.; Yamaguchi, T.; Kawano, M.; Fujita, M. J. Am. Chem.
Soc. 2008, 130, 8160–8161. (l) Yang, C.; Mori, T.; Inoue, Y. J. Org.
Chem. 2008, 73, 5786–5794.
Crystals of CD-1 were obtained by slow evaporation of an
aqueous solution at room temperature for a few weeks. X-ray
crystallographic analysis proved the molecular structure of CD-1
(Figure 1; see Supporting Information Table S4 for detailed
crystal data). In the solid state, CD-1 assembles into a linear
(8) For research on enzyme mimics based on cyclodextrin, see: (a)
Breslow, R.; Dong, S. D. Chem. ReV. 1998, 98, 1997–2012. (b)
Rekharsky, M. V.; Inoue, Y. Chem. ReV. 1998, 98, 1875–1918. (c)
Iglesias, E. J. Am. Chem. Soc. 1998, 120, 13057–13069. (d) Ortega-
Caballero, F.; Rousseau, C.; Christensen, B.; Petersen, T. E.; Bols,
M. J. Am. Chem. Soc. 2005, 127, 3238–3239. (e) Ortega-Caballero,
F.; Bjerre, J.; Laustsen, L. S.; Bols, M. J. Org. Chem. 2005, 70, 7217–
7226. (f) Dong, Z.; Liu, J.; Mao, S.; Huang, X.; Yang, B.; Ren, X.;
Luo, G.; Shen, J. J. Am. Chem. Soc. 2004, 126, 16395–16404. (g)
Chan, W.-K.; Yu, W.-Y.; Che, C.-M.; Wong, M.-K. J. Org. Chem.
2003, 68, 6576–6582. (h) Yang, J.; Gabriele, B.; Belvedere, S.; Huang,
Y.; Breslow, R. J. Org. Chem. 2002, 67, 5057–5067. (i) Rousseau,
C.; Christensen, B.; Petersen, T. E.; Bols, M. Org. Biomol. Chem.
2004, 2, 3476–3482. (j) Ba´scuas, J.; Garc´ıa-R´ıo, L.; Leis, J. R. Org.
Biomol. Chem. 2004, 2, 1186–1193. (k) Chou, D. T. H.; Zhu, J.;
Huang, X.; Bennet, A. J. J. Chem. Soc., Perkin Trans. 2 2001, 83–89.
(l) Iglesias, E.; Ferna´ndez, A. J. Chem. Soc., Perkin Trans. 2 1998,
1691–1700. (m) Rousseau, C.; Ortega-Caballero, F.; Nordstrøm, L. U.;
Christensen, B.; Petersen, T. E.; Bols, M. Chem.sEur. J. 2005, 11,
5094–5101. (n) Bjerre, J.; Nielsen, E. H.; Bols, M. Eur. J. Org. Chem.
2008, 745–752. (o) Marinescu, L. G.; Bols, M. Angew. Chem., Int.
Ed. 2006, 45, 4590–4593.
(5) For a discussion, see: (a) Diederich, F. Angew. Chem., Int. Ed. 2007,
46, 68–69. For the reviews of construction for supramolecular cavity,
see: (b) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J. J. Angew. Chem.,
Int. Ed. 2002, 41, 1488–1508. (c) Saalfrank, R. W.; Maid, H.; Scheurer,
A. Angew. Chem., Int. Ed. 2008, 47, 8794–8824. (d) Kawase, T.;
Kuruta, H. Chem. ReV. 2006, 106, 5250–5273. (e) Mateos-Timoneda,
M. A.; Grego-Calama, M.; Reinhoudt, D. N. Chem. Soc. ReV. 2004,
33, 363–372.
(6) (a) Mukherjee, S.; Yang, J. W.; Hoffman, S.; List, B. Chem. ReV.
2007, 107, 5471–5569. (b) Berkessel, A.; Groger, H. Asymmetric
Organocatalysis; Wiley-VCH: Weinheim, 2005.
(7) (a) Luo, S. Z.; Xu, H.; Li, J. Y.; Zhang, L.; Cheng, J.-P. J. Am. Chem.
Soc. 2007, 129, 3074–3075. (b) Luo, S. Z.; Xu, H.; Chen, L.; Cheng,
J.-P. Org. Lett. 2008, 10, 1775–1778. (c) Luo, S. Z.; Xu, H.; Zhang,
L.; Li, J.; Cheng, J.-P. Org. Lett. 2008, 10, 653–656. (d) Xu, X.-Y.;
Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247–4249. (e)
Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Tanaka, F.; Barbas,
C. F., III. Angew. Chem., Int. Ed. 2007, 46, 5572–5575. (f) Li, J.;
Luo, S. Z.; Cheng, J.-P. J. Org. Chem. 2009, 74, 1747–1750. (g)
Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. J. Am.
Chem. Soc. 2009, 129, 288–289. (h) Utsumi, N.; Imai, M.; Tanaka,
F.; Ramasastry, S. S. V.; Barbas, C. F., III. Org. Lett. 2007, 9, 3445–
3448. (i) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Barbas,
C. F., III. Org. Lett. 2008, 10, 1621–1624. (j) Zhu, M.-K.; Xu, X.-Y.;
Gong, L.-Z. AdV. Synth. Catal. 2008, 350, 1390–1396. (k) Wu, X.;
Ma, Z.; Ye, Z.; Qian, S.; Zhao, G. AdV. Synth. Catal. 2009, 351, 158–
162. (l) Zheng, B.; Liu, Q.; Guo, C.; Wang, X.; He, L. Org. Biomol.
Chem. 2007, 5, 2913–2915. (m) Luo, S. Z.; Qiao, Y.; Zhang, L.; Li,
J.; Li, X.; Cheng, J.-P. J. Org. Chem. 2009, 74, 9521–9523.
(9) (a) Breslow, R.; Graff, A. J. Am. Chem. Soc. 1993, 115, 10988–10989.
(b) Desper, J. M.; Breslow, R. J. Am. Chem. Soc. 1994, 116, 12081–
12082. (c) Yuan, D.-Q.; Dong, S. D.; Breslow, R. Tetrahedron Lett.
1998, 39, 7673–7676. (d) Tagaki, W.; Yamamoto, H. Tetrahedron
Lett. 1991, 32, 1207–1208. (e) Yuan, D.-Q.; Xie, R. G.; Zhao, H. M.
Chin. Chem. Lett. 1991, 2, 617–620. (f) Watanabe, K.; Yamada, Y.;
Goto, K. Bull. Chem. Soc. Jpn. 1985, 58, 1401–1406.
(10) (a) Liu, K.; Haeussinger, D.; Woggon, W. D. Synlett 2007, 2298–
2300. (b) Shen, Z. X.; Ma, J. M.; Liu, Y. H.; Jiao, C. J.; Li, M.; Zhang,
Y. W. Chirality. 2005, 17, 556–558. (c) Huang, J.; Zhang, X.;
Armstrong, D. W. Angew. Chem., Int. Ed. 2007, 46, 9073–9077.
(11) Petter, R. C.; Salek, J. S.; Sikorski, C. T; Kumaravel, G.; Lin, F. T.
J. Am. Chem. Soc. 1990, 112, 3860–3868.
9
J. AM. CHEM. SOC. VOL. 132, NO. 20, 2010 7217