ACS Catalysis
Letter
Scheme 1. Proposed Mechanism for the Catalysis
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental and spectroscopy details for all the products. This
information is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the Spanish MINECO [Projects
CTQ2007-65218/BQU, CTQ2011-23459, CTQ2011-24165,
and Consolider Ingenio 2010 (CSD2007-00006)], the DGA
(E35), Generalitat Valenciana (PROMETEO/2009/039 and
FEDER), and the European Social Fund (FSE) is acknowl-
edged. Dedicated to Prof. Antonio Laguna on the occasion of
his 65th birthday.
REFERENCES
■
(1) Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. J. Dalton Trans.
2009, 753.
(2) Guillena, G.; Ramon
46, 2358.
́
, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007,
(3) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N.
Tetrahedrom Lett. 1981, 22, 4107.
The Knoevenagel condensation is catalyzed by the base. It
implies the initial deprotonation of the methylene group of the
nitrile and the subsequent nucleophilic attack of the generated
α-cyano carbanion to the aldehyde carbon atom. The
deprotonation appears to be a determining step of the overall
process. Thus, it should be noted that electron-donating
substituents at the para position of the aromatic ring of the
nitrile slow down the reaction, whereas electron-donating
substituents at the para position of the phenyl group of the
benzyl alcohol, which should decrease the electrophilicity of the
aldehyde, increase the alkylation rate. This is in contrast with
that observed by Lin and Lau for the α-alkylation of
arylacetonitriles with primary alcohols catalyzed by dialkyl-
aminocyclopentadienylruthenium(II) complexes.6 Ruthenium
and iridiumhydride complexes have been demonstrated to
catalyze the Knoevenagel condensation;19 however, this is not
the case of 4. Although the latter and the aldehyde are
generated by reaction of 1 with the alcohol, the alkylation does
not occur in the absence of base.
The α-alkylation of methyl ketones can be rationalized in a
similar manner with the particularity that the reduction of the
α,β-unsaturated ketone, generated from the Knoevenagel
condensation, should take place via a hydroxyallyl intermediate,
as has been previously shown by us.20 In this case, the
nucleophilic attack of the enolate to the carbon atom of the
aldehyde during the Knoevenagel condensation appears to have
a significant contribution to the rate of the overall process.
Thus, electron-donating substituents at the para position of the
aromatic ring of benzyl alcohol slow down the reaction.
In conclusion, these results point out that osmium must be
taken into account to develop the borrowing hydrogen
methodology, since it can afford catalysts more efficient than
those based on traditional metals, in particular for some
reactions such as the α-alkylations of arylacetontriles and
methyl ketones.
(4) Lofberg, C.; Grigg, R.; Whittaker, M. A.; Keep, A.; Derrick, A. J.
̈
Org. Chem. 2006, 71, 8023.
(5) Sawaguchi, T.; Obora, Y. Chem. Lett. 2011, 40, 1055.
(6) Cheung, H. W.; Li, J.; Zheng, W.; Zhou, Z.; Chiu, Y. H.; Lin, Z.;
Lau, C. P. Dalton Trans. 2010, 39, 265.
(7) (a) Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani,
K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 5662. (b) Motokura, K.;
Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda,
K. Chem. Eur, J. 2006, 12, 8228.
(8) (a) Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Org. Chem.
2001, 66, 9020. (b) Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C.
Tetrahedron Lett. 2002, 43, 7987. (c) Martínez, R.; Brand, G. J.;
Ramon
R.; Ramon
́
, D. J.; Yus, M. Tetrahedron Lett. 2005, 46, 3683. (d) Martínez,
, D. J.; Yus, M. Tetrahedron 2006, 62, 8988. (e) Kuwahara,
́
T.; Fukuyama, T.; Ryu, I. Org. Lett. 2012, 14, 4703.
(9) (a) Taguchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.;
Ishii, Y. J. Am. Chem. Soc. 2004, 126, 72. (b) Onodera, G.;
Nishibayashi, Y.; Uemura, S. Angew. Chem., Int. Ed. 2006, 45, 3819.
(c) Morita, M.; Obora, Y.; Ishii, Y. Chem. Comun. 2007, 2850.
(10) (a) Cho, C. S. J. Mol. Catal. A: Chem. 2005, 240, 55. (b) Kwon,
M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.; Park, J. Angew.
Chem., Int. Ed. 2005, 44, 6913. (c) Yamada, Y. M. A.; Uozumi, Y. Org.
Lett. 2006, 8, 1375.
(11) (a) Esteruelas, M. A.; Oro, L. A. Adv. Organomet. Chem. 2001,
47, 1. (b) Esteruelas, M. A.; Lop
́
ez, A. M. Organometallics 2005, 24,
, M. Coord. Chem.
3584. (c) Esteruelas, M. A.; Lopez, A. M.; Olivan
́
́
Rev. 2007, 251, 795. (d) Jia, G. Coord. Chem. Rev. 2007, 251, 2167.
(12) Although osmium has enabled oxidation catalysts, the danger of
its oxides that are associated with high volatility has negatively
influenced its general use.
(13) See, for example: (a) Barrio, P.; Esteruelas, M. A.; Onate, E.
Organometallics 2004, 23, 1340. (b) Batuecas, M.; Esteruelas, M. A.;
̃
García-Yebra, C.; Onate, E. Organometallics 2010, 29, 2166. (c) Varela-
̃
́ ́
Fernandez, A.; García-Yebra, C.; Varela, J. A.; Esteruelas, M. A.; Saa, C.
Angew. Chem., Int. Ed. 2010, 49, 4278. (d) Baratta, W.; Barbato, C.;
Magnolia, S.; Siega, K.; Rigo, P. Chem.Eur. J. 2010, 16, 3201.
(e) Baratta, W.; Benedetti, F.; Del Zotto, A.; Fanfoni, L.; Felluga, F.;
Magnolia, S.; Putiganano, E.; Rigo, P. Organometallics 2010, 29, 3563.
2074
dx.doi.org/10.1021/cs4005375 | ACS Catal. 2013, 3, 2072−2075