Published on Web 05/07/2010
Mechanistic Investigation of the Palladium-Catalyzed
Decarboxylative Cyclization of γ-Methylidene-δ-valerolactones
with Isocyanates: Kinetic Studies and Origin of the Site
Selectivity in the Nucleophilic Attack at a (π-Allyl)palladium
Ryo Shintani,* Takaoki Tsuji, Soyoung Park, and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto UniVersity,
Sakyo, Kyoto 606-8502, Japan
Received March 24, 2010; E-mail: shintani@kuchem.kyoto-u.ac.jp; thayashi@kuchem.kyoto-u.ac.jp
Abstract: Mechanistic studies for the palladium-catalyzed decarboxylative cyclization reactions of γ-meth-
ylidene-δ-valerolactones 1 with isocyanates 2 are described. The reactions can be effectively catalyzed by
palladium triarylphosphine complexes to give piperidones 3 and/or azaspiro[2.4]heptanones 4. Through
kinetic studies using NMR spectroscopy, it has been determined that the oxidative addition of lactones 1
to palladium(0) is the turnover-limiting step of the catalytic cycle. By changes in the electronic properties
of the triarylphosphine ligands, the product distribution between 3 and 4 can be easily controlled, and an
explanation for the origin of this selectivity is provided. The selectivity between 3 and 4 is also influenced
by the nature of the nitrogen substituent on isocyanates 2, and more electron-rich substituents tend to give
higher selectivity toward azaspiro[2.4]heptanones 4. These studies represent the first systematic investigation
into the selectivity between terminal attack and central attack at (π-allyl)palladium species by nitrogen-
based nucleophiles.
containing heterocycles,2,3 and 2-((trimethylsilyl)methyl)-2-prope-
nyl acetate and its derivatives are used as effective precursors for
Introduction
Intermolecular cycloadditions catalyzed by transition-metal
complexes are powerful methods for convergent synthesis of cyclic
compounds.1 The development of new and efficient intermolecular
cycloaddition reactions is therefore an important objective in
synthetic organic chemistry in order to expand the accessibility to
a wide variety of carbo- and heterocyclic materials. In this regard,
reactions of catalytically generated electrophilic (π-allyl)palladium
species bearing a pendant nucleophile with carbon-carbon or
carbon-heteroatom unsaturated bonds represent an efficient and
attractive approach. For example, vinyl epoxides and aziridines are
often utilized for the construction of oxygen- and nitrogen-
palladium trimethylenemethane species in the context of catalytic
[3 + n] cycloaddition reactions.4,5
To enhance the utility of palladium-catalyzed intermolecular
cycloaddition chemistry, we recently devised γ-methylidene-
δ-valerolactones (1 in Scheme 1) as new reagents for decar-
boxylative addition/cyclization reactions with several reaction
partners to produce various cyclic compounds under mild
palladium catalysis.6 These lactones 1 were originally designed
(4) (a) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1979, 101, 6429.
(b) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315.
(c) Trost, B. M.; MacPherson, D. T. J. Am. Chem. Soc. 1987, 109,
3483. (d) Trost, B. M.; Seoane, P. R. J. Am. Chem. Soc. 1987, 109,
615. (e) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schwo¨rer, U.
J. Am. Chem. Soc. 2006, 128, 13328. (f) Trost, B. M.; Silverman,
S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398. (g)
Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330. (h)
Shintani, R.; Park, S.; Duan, W.-L.; Hayashi, T. Angew. Chem., Int.
Ed. 2007, 46, 5901. See also: (i) Shimizu, I.; Ohashi, Y.; Tsuji, J.
Tetrahedron Lett. 1984, 25, 5183. (j) Inoue, Y.; Ajioka, M.; Toyofuku,
M.; Mori, A.; Fukui, T.; Kawashima, Y.; Miyano, S.; Hashimoto, H.
J. Mol. Catal. 1985, 32, 91.
(1) (a) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2830.
(b) Varela, J. A.; Saa´, C. Synlett 2008, 2571. (c) Shibata, T. AdV.
Synth. Catal. 2006, 348, 2328. (d) Nakamura, I.; Yamamoto, Y. Chem.
ReV. 2004, 104, 2127. (e) Wender, P. A.; Gamber, G. G.; Williams,
T. J. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A.,
Ed.; Wiley-VCH: Weinheim, Germany, 2005; p 263. (f) Mandai, T.
In Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.;
Wiley-VCH: Weinheim, Germany, 2004; p 925. (g) Kobayashi, S.,
Jørgensen, K. A., Eds. Cycloaddition Reactions in Organic Synthesis;
Wiley-VCH: Weinheim, Germany, 2002.
(2) (a) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792.
(b) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1988, 110, 7933.
(c) Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836.
(d) Larksarp, C.; Alper, H. J. Am. Chem. Soc. 1997, 119, 3709. (e)
Butler, D. C. D.; Inman, G. A.; Alper, H. J. Org. Chem. 2000, 65,
5887.
(5) For reviews, see: (a) Chan, D. M. T. In Cycloaddition Reactions in
Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH:
Weinheim, Germany, 2002; p 57. (a) Ogoshi, S. In Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.;
Wiley: Hoboken, NJ, 2002; p 1995.
(6) (a) Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007,
129, 12356. (b) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem. Soc.
2007, 129, 14866. (c) Shintani, R.; Park, S.; Shirozu, F.; Murakami,
M.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 16174. (d) Shintani,
R.; Murakami, M.; Hayashi, T. Org. Lett. 2009, 11, 457. (e) Park, S.;
Shintani, R.; Hayashi, T. Chem. Lett. 2009, 38, 204. (f) Shintani, R.;
Hayashi, S.; Murakami, M.; Takeda, M.; Hayashi, T. Org. Lett. 2009,
11, 3754. (g) Shintani, R.; Murakami, M.; Tsuji, T.; Tanno, H.;
Hayashi, T. Org. Lett. 2009, 11, 5642.
(3) (a) Fujinami, T.; Suzuki, T.; Kamiya, M.; Fukuzuka, S.; Sakai, S.
Chem. Lett. 1985, 199. (b) Trost, B. M.; Angle, S. R. J. Am. Chem.
Soc. 1985, 107, 6123. (c) Shim, J.-G.; Yamamoto, Y. J. Org. Chem.
1998, 63, 3067. (d) Shim, J.-G.; Yamamoto, Y. Tetrahedron Lett. 1999,
40, 1053. For a review, see: (e) Courillon, C.; Thorimbert, S.; Malacr`ıa,
M. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley: Hoboken, NJ, 2002; p 1795.
9
7508 J. AM. CHEM. SOC. 2010, 132, 7508–7513
10.1021/ja1023223 2010 American Chemical Society