Organic Letters
Letter
kinetically feasible.20 Stern−Volmer fluorescence quenching
experiments clearly demonstrated this hypothesis, and the
excited state of the photocatalyst can be quenched by t-BPA in
the presence of TFA (no quenching was observed by t-BPA in
the absence of TFA). Moreover, we conducted a light/dark
experiment, which showed that coupling product 3 formed
only under continuous irradiation (Scheme 5). This result
suggests that radical-chain propagation was not involved in the
reaction.
Experimental procedures and spectroscopic data for all
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
On the basis of these observations and the literature reports,
we propose the mechanism depicted in Scheme 6. Photo-
The authors declare no competing financial interest.
Scheme 6. Proposed Mechanism
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (21732002, 21672117, 21602117) and the Tianjin
Natural Science Foundation (16JCZDJC32400) for generous
financial support for our programs.
REFERENCES
■
(1) (a) Lewis, J. R. Nat. Prod. Rep. 2001, 18, 95. (b) Lin, N.-H.;
Carrera, G. M.; Anderson, D. J. J. Med. Chem. 1994, 37, 3542.
(c) Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J.-M.;
Wienen, W. J. Med. Chem. 2002, 45, 1757. (d) Reuveni, M. Eur. J.
Plant Pathol. 2003, 109, 243.
(2) For selected examples, see: (a) Nystrom, R. F.; Brown, W. G. J.
Am. Chem. Soc. 1948, 70, 3738. (b) Soffer, L. M.; Katz, M. J. Am.
Chem. Soc. 1956, 78, 1705. (c) Chandrasekharan, J.; Ramachandran,
P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446. (d) Bair, K. W.;
Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem.
1990, 33, 2385.
(3) (a) Molander, G. A.; Sandrock, D. L. Org. Lett. 2007, 9, 1597.
(b) Molander, G. A.; Gormisky, P. E.; Sandrock, D. L. J. Org. Chem.
2008, 73, 2052. (c) Molander, G. A.; Hiebel, M.-A. Org. Lett. 2010,
12, 4876. (d) Molander, G. A.; Shin, I. Org. Lett. 2011, 13, 3956.
excitation of the [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 photocatalyst
with a blue LED produces a long-lived excited state Ir*3+. The
IV/ III
reduction of t-BPA (E0 = −1.56 V vs SCE) by Ir*3+ (E1/2
*
́
(e) Fleury-Bregeot, N.; Raushel, J.; Sandrock, D. L.; Dreher, S. D.;
= −0.89 V vs SCE) via proton-coupled electron transfer under
acidic conditions affords an oxidized iridium species (Ir4+),
acetic acid, and a tert-butoxy radical.20 α-Aminoalkyl radical A
is then generated by means of hydrogen-atom transfer (HAT)
between the N-protected amine and the tert-butoxy radical.
Radical A then adds to the protonated electron-deficient
heteroarene (1) via a Minisci-type pathway to afford radical
Molander, G. A. Chem. - Eur. J. 2012, 18, 9564. (f) Molander, G. A.;
́
Vargas, F. Org. Lett. 2007, 9, 203. (g) Molander, G. A.; Jean-Gerard,
L. J. Org. Chem. 2007, 72, 8422.
(4) (a) Dieter, R. K.; Li, S. Tetrahedron Lett. 1995, 36, 3613.
(b) Dieter, R. K.; Li, S. J. Org. Chem. 1997, 62, 7726.
(5) (a) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.;
Chen, C. J. Am. Chem. Soc. 2006, 128, 3538. (b) Klapars, A.; Campos,
K. R.; Waldman, J. H.; Zewge, D.; Dormer, P. G.; Chen, C. J. Org.
Chem. 2008, 73, 4986. (c) Barker, G.; O’Brien, P.; Campos, K. R. Org.
Lett. 2010, 12, 4176. (d) Barker, G.; McGrath, J. L.; Klapars, A.;
Stead, D.; Zhou, G.; Campos, K. R.; O’Brien, P. J. Org. Chem. 2011,
76, 5936.
cation B. Single-electron oxidation of this intermediate by Ir4+
IV/III
(E1/2
= +1.70 V vs SCE in MeCN/H2O = 2:1) and
deprotonation gives the final α-aminoalkylated product 3 and
closes the photoredox cycle.
(6) Yoshikai, N.; Mieczkowski, A.; Matsumoto, A.; Ilies, L.;
Nakamura, E. J. Am. Chem. Soc. 2010, 132, 5568.
In conclusion, we have described the first method for
photoredox-mediated direct CDC to accomplish α-amino-
alkylation of N-heteroarenes by a wide variety of amines. This
mild and efficient reaction was applicable to N-heterocycles
such as benzothiazoles, (iso)quinolones, phenanthridine, and
other heterocyclic derivatives without the need for substrate
prefunctionalization and is scalable to the gram level.
Furthermore, the reaction was also suitable for other hydrogen
donors, such as ethers, a formamide, an aldehyde, p-xylene, and
alkanes. We expect that this reaction will be a useful
complement to existing CDC technologies.
(7) (a) Coldham, I.; Leonori, D. Org. Lett. 2008, 10, 3923. (b) Beng,
T. K.; Gawley, R. E. Org. Lett. 2011, 13, 394. (c) Millet, A.; Dailler,
D.; Larini, P.; Baudoin, O. Angew. Chem., Int. Ed. 2014, 53, 2678.
(8) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687.
(9) (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011,
334, 1114. (b) Prier, C. K.; MacMillan, D. W. C. Chem. Sci. 2014, 5,
4173.
(10) (a) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS
Catal. 2017, 7, 6065. (b) Zuo, Z.-W.; Ahneman, D. T.; Chu, L.;
Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345,
437. (c) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J.
D.; MacMillan, D. W. C. Science 2016, 352, 1304.
(11) (a) Cowden, C. J. Org. Lett. 2003, 5, 4497. (b) Cheng, W.-M.;
Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907. (c) Proctor, R. S. J.; Davis,
H. J.; Phipps, R. J. Science 2018, 360, 419.
(12) For reviews of cross-dehydrogenative coupling reactions, see:
(a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014,
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
D
Org. Lett. XXXX, XXX, XXX−XXX