25; (e) H. Tian and Q. C. Wang, Chem. Soc. Rev., 2006, 35, 361;
(f) B. Champin, P. Mobian and J.-P. Sauvage, Chem. Soc. Rev.,
2007, 36, 358; (g) E. R. Kay, D. A. Leigh and F. Zerbetto, Angew.
Chem., Int. Ed., 2007, 46, 72; (h) V. Balzani, A. Credi and
M. Venturi, Chem. Soc. Rev., 2009, 38, 1542; (i) J. F. Stoddart,
Nat. Chem., 2009, 1, 14; (j) D.-H. Qu and B. L. Feringa, Angew.
Chem., Int. Ed., 2010, 49, 1107.
2 (a) D. H. Qu, Q. C. Wang, J. Ren and H. Tian, Org. Lett., 2004, 6,
2085; (b) V. Balzani, M. Clemente-Leon, A. Credi, B. Ferrer,
´
M. Venturi, A. H. Flood and J. F. Stoddart, Proc. Natl. Acad.
Sci. U. S. A., 2006, 103, 1178; (c) D. H. Qu, Q. C. Wang and
H. Tian, Angew. Chem., Int. Ed., 2005, 44, 5296; (d) D. H. Qu,
F. Y. Ji, Q. C. Wang and H. Tian, Adv. Mater., 2006, 18, 2035;
(e) A. Fernandes, A. Viterisi, F. Coutrot, S. Potok, D. A. Leigh,
V. Aucagne and S. Papot, Angew. Chem., Int. Ed., 2009, 48, 6443;
(f) D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib,
J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2009, 131, 1686.
3 (a) F. Huang, K. A. Switek and H. W. Gibson, Chem. Commun.,
2005, 3655; (b) X. Ma, Q. C. Wang, D. H. Qu, Y. Xu, F. Y. Ji and
H. Tian, Adv. Funct. Mater., 2007, 17, 829; (c) S. Sharma,
G. J. E. Davidson and S. J. Loeb, Chem. Commun., 2008, 582;
(d) L.-L. Zhu, X. Li, F.-Y. Ji, X. Ma, Q.-C. Wang and H. Tian,
Langmuir, 2009, 25, 3482; (e) L.-L. Zhu, D.-H. Qu, D. Zhang,
Z.-F. Chen, Q.-C. Wang and H. Tian, Tetrahedron, 2010, 66, 1254.
4 (a) S. T. Caldwell, G. Cooke, A. Cooper, M. Nutley, G. Rabani,
V. Rotello, B. O. Smith and P. Woiseld, Chem. Commun., 2008,
2650; (b) K. A. McNitt, K. Parimal, A. I. Share, A. C. Fahrenbach,
E. H. Witlicki, M. Pink, D. K. Bediako, C. L. Plaisier, N. Le,
L. P. Heeringa, D. A. V. Griend and A. H. Flood, J. Am. Chem.
Soc., 2009, 131, 1305.
Fig. 3 Induced circular dichroism (ICD) spectra (1.01 ꢁ 10ꢂ3 M in
water, 298 K) for (a) FVAC2CD; (b) FVA-oCCD; (c) FVA-pCCD
and (d) FVA-op.
azobenzenyl moiety located in and aligned parallel to the axis
of b-CD.12 As translated to FVA-oCCD, the intensity of the
negative band at around 255 nm is drastically weakened from
ꢂ4.5 to ꢂ0.3 mdeg, whereas the positive band at around
330 nm remains almost unchanged (Fig. 3, curve b). Oppo-
sitely, the ICD signal of FVA-pCCD at 330 nm decreased
from 4.7 to 1.8 mdeg, but the peak at around 255 nm varies
little (Fig. 3, curve c). The two alternative phenomena signify
that the b-CD is greatly released from the ferrocene and the
azobenzene station, respectively, weakening the corresponding
ICD signals. The b-CD host is disassembled from both
stations in the state of FVA-op, which makes both the bands
shrink in Fig. 3, curve d, exhibiting the lack of ICD sensitivity
of the guest structure. The intensity of the dual-wavelength
ICD signals could directly give feedback of the structure
information. The numbers of ICD signal bands are just in
accordance with the number of rings of the corresponding
ensemble states. In this way, the multi-steady states of such a
supramolecular system might be used as a novel molecular-
scale storage medium with optical signal expressions.
5 (a) T. Muraoka, K. Kinbara and T. Aida, Nature, 2006, 440, 512;
(b) A. Caballero, R. Martinez, V. Lloveras, I. Ratera, J. Vidal-
Gancedo, K. Wurst, A. Tarraga, P. Molina and J. Veciana, J. Am.
Chem. Soc., 2005, 127, 15666; (c) C. M. Cardona, S. Mendoza and
A. E. Kaifer, Chem. Soc. Rev., 2000, 29, 37; (d) O. Buriez, J. Ma.
Heldt, E. Labbe, A. Vessieres, G. Jaouen and C. Amatore,
´
Chem.–Eur. J., 2008, 14, 8195; (e) K. Namiki, A. Sakamoto,
M. Murata, S. Kume and H. Nishihara, Chem. Commun., 2007,
4650; (f) Y. Wang, N. Ma, Z. Wang and X. Zhang, Angew. Chem.,
Int. Ed., 2007, 46, 2823; (g) M. Lahav, K. T. Ranjit, E. Katz and
I. Willner, Chem. Commun., 1997, 259.
6 (a) M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875;
(b) G. Wenz, B. H. Han and A. Muller, Chem. Rev., 2006, 106, 782;
¨
(c) Y. Liu and Y. Chen, Acc. Chem. Res., 2006, 39, 681;
(d) K. Sakamoto, Y. Takashima, H. Yamaguchi and A. Harada,
J. Org. Chem., 2007, 72, 459; (e) E. J. F. Klotz, T. D. W. Claridge
and H. L. Anderson, J. Am. Chem. Soc., 2006, 128, 15374.
7 (a) Y. Kawaguchi and A. Harada, Org. Lett., 2000, 2, 1353;
(b) A. Mirzoian and A. E. Kaifer, Chem.–Eur. J., 1997, 3, 1052.
8 This illustration is based on the tested association constants
between the reference compounds and b-CD (K1 = 2.42 ꢁ
103 Mꢂ1, K2 = 1.63 ꢁ 103 Mꢂ1). The oscillation of the ring between
the two stations in the 1 : 1 complex (see ESI) shows that b-CD could
bind the two stations of FVA with the same magnitude level.
9 (a) C. A. Stanier, S. J. Alderman, T. D. W. Claridge and
H. L. Anderson, Angew. Chem., Int. Ed., 2002, 41, 1769;
(b) H. Murakami, A. Kawabuchi, R. Matsumoto, T. Ido and
N. Nakashima, J. Am. Chem. Soc., 2005, 127, 15891.
In summary, a novel ensemble system of b-CD inclusion
complexes was prepared. The assembly/disassembly behaviors
of the b-CD ring can be selectively controlled by reversible
redox and photochemical operations, thus the modulation of
the complexation stoichiometries and sites was realized.
Meantime, the ensemble structures are equivalent to the
number of ICD signal peaks. Such stepwise supramolecular
interconversions provide an effective paradigm for design and
development of supramolecule-to-supramolecule transforma-
tion processes with easily identifiable optical outputs
10 (a) S. Mendoza, P. D. Davidov and A. E. Kaifer, Chem.–Eur. J.,
1998, 4, 864; (b) T. Kuroda-Sowa, M. Lam, A. L. Rheingold,
C. Frommen, W. M. Reiff, M. Nakano, J. Yoo, A. L. Maniero,
L.-C. Brunel, G. Christou and D. N. Hendrickson, Inorg. Chem.,
2001, 40, 6469.
11 (a) Y. Liu, Y. L. Zhao, H. Y. Zhang, Z. Fan, G. D. Wen and
F. Ding, J. Phys. Chem. B, 2004, 108, 8836; (b) Y.-B. Han,
K. J. Cheng, K. A. Simon, Y. M. Lan, P. Sejwal and Y.-Y. Luk,
J. Am. Chem. Soc., 2006, 128, 13913; (c) N. Berova, L. Di Bari and
G. Pescitelli, Chem. Soc. Rev., 2007, 36, 914.
This work was supported by NSFC/China (20972053,
20603009), the National Basic Research 973 Program
(2006CB806200), and the Scientific Committee of Shanghai.
We thank Professor Yitao Long and Mr Wei Song for relevant
advice on the electrochemical study.
Notes and references
1 (a) P. L. Anelli, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc.,
1991, 113, 5131; (b) V. Balzani, A. Credi, F. M. Raymo and
J. F. Stoddart, Angew. Chem., Int. Ed., 2000, 39, 3348;
(c) K. Kinbara and T. Aida, Chem. Rev., 2005, 105, 1377;
(d) W. R. Browne and B. L. Feringa, Nat. Nanotechnol., 2006, 1,
12 (a) M. Kodaka, J. Phys. Chem. A, 1998, 102, 8101; (b) Q. C. Wang,
X. Ma, D. H. Qu and H. Tian, Chem.–Eur. J., 2006, 12, 1088;
(c) L. Zhu, X. Ma, F. Ji, Q. Wang and H. Tian, Chem.–Eur. J.,
2007, 13, 9216.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2587–2589 | 2589