Characterization of Red-emitting Iridium Complexes
299/[1041]
although the methoxy and methyl group increased the HOMO energy
level, it strongly increased the LUMO more than the HOMO. Espe-
cially, Ir(dpq-5OCH3)2(acac) shows blue-shifted phosphorescence
wavelength even though the methoxy group (–OCH3) substituted on
the 50-position of the phenyl ring is an electron donating group. It is
because the methoxy group on the 50-position raises both the LUMO
and HOMO level. Moreover, the methoxyphenyl group onto the iri-
dium atom destabilized the MLCT state and leads to an increase in
the emission energy. Thus, the emission wavelength is blue-shifted.
4. CONCLUSIONS
We have studied a 5’substitutent effect of Ir(dpq)2(acac) for the mate-
rials in red emissive OLEDs. We found that substitution on phenyl
ring has influence on the emission wavelength and efficiency. The
maximum emission wavelength of Ir(dpq-5 F)2(acac), Ir(dpq-5CH3)2
(acac), and Ir(dpq-5OCH3)2(acac) in CH2Cl2 was recorded at 606,
616, and 606 nm, respectively. While the substitution of EWG (ꢂ5 F)
caused blue-shift of emission wavelength from 612 nm to 606 nm and
improved the efficiency withdrawing group (-F) on the 50-position of
the phenyl ring lowered the HOMO level slightly increased PL
efficiency by decreasing the HOMO energy level.
REFERENCES
[1] Wu, F. I., Su, H. J., Shu, C. F., Luo, L., Diau, W. G., Cheng, C. H., Duan, J. P., &
Lee, G. H. (2005). J. Mater. Chem., 15, 1035.
[2] Adachi, C., Baldo, M. A., Forrest, S. R., Lamansky, S., Thompson, M. E., & Kwang,
R. C. (2001). Appl. Phys. Lett., 78, 1662.
[3] Thompson, M. E., Burrows, P. E., & Forrest, S. R. (1999). Curr. Opin. Solid State
Mater. Sci., 4, 369.
[4] Kohler, A., Wilson, J. S., & Friend, R. H. (2002). Adv. Mater., 14, 701.
[5] Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N.,
Bau, R., & Thompson, M. E. (2003). J. Am. Chem. Soc., 125, 7377.
[6] Park, Y. H. & Kim, Y. S. (2007). Thin Solid Films., 515, 5084.
[7] Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I.,
Bortz, M., Mui, B., Bau, R., & Thompson, M. E. (2001). Inorg. Chem., 40, 1704.
[8] Baldo, M. A., Thompson, M. E., & Forrest, S. R. (1999). Pure Appl. Chem., 71, 2095.
[9] Brooks, J., Babaya, T., Lamansky, S., Djurovich, P. L., Tsyba, I., Bau, R., &
Thompson, M. E. (2002). Inorg. Chem. 41, 3055.
[10] Wu, Fang-Iy., Su, Huei-Jen., Shu, Ching-Fong., Luo, Liyang., Diau, Wei-Guang,
Cheng, Chien-Hong., Duan, Jiun-Pey., & Lee, Gene-Hsiang. (2005). J. Mater.
Chem., 15, 1035.
[11] Fehnel, E. A. (1966). J. Org. Chem., 31, 2899.
[12] Zhang, X., Fan, X., Wang, J., Li, Y., & Chin, J. (2004). Chem. Soc., 51, 1339.
[13] Nonoyama, M. (1974). Bull. Chem. Soc. Jpn., 47, 767.