L. A. Tuan, G. Kim / Tetrahedron Letters 51 (2010) 2354–2355
2355
Table 1
We have tried to differentiate the enantiotopic 1,3-dicarbonyl
groups of 1,3-cyclohexanedione by asymmetric cyclodehydration
process for the synthesis of chiral mesembrane. In the intramolec-
ular condensation process, marginal selectivity has been found,
and the subsequent conversion to the known intermediates
confirmed each of the structures and ensued the formal synthesis
of (ꢀ)-mesembrane.
OMe
OMe
OMe
OMe
O
O
TsOH, benzene
65oC, 2h
CONHR
N
R
O
O
6
7
Acknowledgment
Entry
1
R
Yield (%)
Ratio of 7a
This work was supported by the Korea Research Foundation
Grant funded by Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2008–313-C00461).
99
97
82
3:1
1-Naph
Me
H
References and notes
2
3
2.4:1
1.2:1
Me
H
Ph
1. Jeffs, P. W.. In The Alkaloids; Rodrigo, R. G. A., Ed.; Academic Press: New York,
1981; Vol. 19, p 1.
2. Lewis, J. R. Nat. Prod. Rep. 1998, 15, 107.
C6H11
Me
H
3. (a) Hoshino, O.. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York,
1987; Vol. 51, p 323; (b) Pearson, W. H.; Szura, D. P.; Postich, M. J. J. Am. Chem.
Soc. 1992, 114, 1329; (c) Iwamatsu, S. I.; Matsubara, K.; Nagashima, H. J. Org.
Chem. 1999, 64, 9625; (d) Padwa, A.; Brodney, M. A.; Dimitroff, M.; Liu, B.; Wu,
T. J. Org. Chem. 2001, 66, 3119; (e) Bru, C.; Guillou, C. Tetrahedron 2006, 62,
9043; (f) Bohno, M.; Imase, H.; Chida, N. Chem. Commun. 2004, 1086; (g)
Pearson, W. H.; Lovering, F. E. J. Org. Chem. 1998, 63, 3607; (h) Martin, S. F.;
Campbell, C. L. J. Org. Chem. 1988, 53, 3184.
H
Me
4
83
1.1:1
Me Me
Ratios were detected by 1H NMR.
a
4. For the asymmetric syntheticapproaches, see: (a) Solé, D.; Bonjoch, J. Tetrahedron
Lett. 1991, 32, 5183; (b) Mori, M.; Kuroda, S.; Zhang, C. S.; Sato, Y. J. Org. Chem.
1997, 62, 3263; (c) Saito, M.; Matsuo, J. I.; Ishibashi, H. Tetrahedron 2007, 63, 4865.
5. Compound 4 has been prepared by modifying the known process4a,6 coupling
1,3-cyclohexadione with 4-bromoveratrole in the presence of Pd(OAc)2
(0.01 equiv) and (2-biphenyl)di-tert-butylphosphine (0.02 equiv) (81% yield),
O-allylation with allylbromide followed by Claisen rearrangement (86% yield),
and oxidative cleavage to carboxylic acid 4 by NaIO4/KMnO4 (65% yield): 1H
NMR (400 MHz, CDCl3) d 6.81 (1H, d, J = 8.4 Hz), 6.63–6.55 (2H, m), 3.86 (3H, s,
OMe), 3.83 (3H, s, OMe), 3.22 (2H, s), 2.78–2.62 (4H, m br), 1.98–1.84 (2H, m
br); 13C NMR (100 MHz, CDCl3) d 207.2, 177.0, 149.7, 148.9, 126.8, 119.1, 111.7,
109.3, 69.9, 55.9, 55.8, 40.6, 38.6, 17.0; IR (neat, cmꢀ1) 2940, 1716, 1697, 1516,
1261, 1150, 1022, 669.
OMe
OMe
OMe
OMe
MeS
S
O
O
AIBN, Bu3SnH
i) NaBH4, THF/MeOH
toluene, reflux, 4h
84%
N
H
O
ii) NaH, CS2, MeI, THF
48h, 95% (2 steps)
N
H
O
Me
1-Naph
Me
1-Naph
8
7a
6. Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009, 11,
4978.
7. Amat, M.; Cantó, M.; Llor, N.; Ponzo, V.; Pérez, M.; Bosch, J. Angew. Chem., Int.
Ed. 2002, 41, 335.
OMe
OMe
OMe
OMe
OMe
OMe
8. Garrett, C. E.; Jiang, X.; Prasad, K.; Repic, O. Tetrahedron Lett. 2002, 43, 4161.
9. Huang, Q.; Wang, Q.; Zheng, J.;Zhang, J.; Pan, X.;She, X. Tetrahedron2007, 63, 1014.
10. Compound 10: ½a D30
ꢁ
64.2 (c 1.45, CHCl3); 1H NMR (400 MHz, CDCl3) d 8.22 (1H,
TFA, Et3SiH
2h, 91%
d, J = 8.0 Hz), 7.83 (1H, d, J = 8.0 Hz), 7.77 (1H, m), 7.58–7.38 (4H, m), 6.98 (1H,
dd, J = 2.0, 8.4 Hz), 6.92 (1H, d, J = 2.0 Hz), 6.85 (1H, d, J = 8.4 Hz), 6.06 (1H, q,
J = 6.8 Hz), 3.94 (3H, s, OMe), 3.89 (3H, s, OMe), 3.53 (1H, dd, J = 5.6, 8.4 Hz),
2.80 (1H, d, J = 16.4 Hz), 2.61 (1H, d, J = 16.4 Hz), 1.80–1.60 (2H, m), 1.43–1.36
(1H, m), 1.2–1.1 (1H, m), 1.11 (3H, d, J = 6.8 Hz), 0.95–0.68 (3H, m), 0.53–0.47
(1H, m); 13C NMR (100 MHz, CDCl3) d 173.1, 148.8, 147.7, 139.1, 136.5, 133.4,
132.3, 128.6, 128.5, 126.7, 125.8, 124.8, 124.0, 123.6, 118.6, 110.8, 110.2, 61.6,
56.2, 55.9, 45.28, 45.26, 39.8, 35.5, 29.1, 22.1, 21.6, 15.6; IR (neat, cmꢀ1) 3048,
2935, 2859, 1675, 1520, 1453, 1416, 1255, 1027, 808, 780, 731. Compound 11:
N
H
O
N
H
O
1-Naph
N
O
Me
1-Naph
Me
Me
1-Naph
H
H
H
10
9
(68%)
11
(23%)
Scheme 2.
½
a 3D0
ꢁ
ꢀ71.4 (c 0.5, CHCl3); 1H NMR (400 MHz, CDCl3) d 7.76 (1H, d, J = 8 Hz),
7.72 (1H, d, J = 8 Hz), 7.54 (1H, d, J = 6.8 Hz), 7.43 (1H, m), 7.36–7.29 (2H, m),
7.02 (1H, m), 6.36 (1H, dd, J = 2.8, 8.4 Hz), 6.26 (1H, d, J = 8.4 Hz), 6.10 (1H, d,
J = 2.8 Hz), 5.98 (1H, q, J = 7.2 Hz), 3.76 (3H, s, OMe), 3.45 (3H, s, OMe), 2.97
(1H, dd, J = 6, 9.2 Hz), 2.80 (1H, d, J = 16.4 Hz), 2.67 (1H, d, J = 16.4 Hz), 2.05 (1H,
m), 1.72 (3H, d, J = 6.8 Hz), 1.72–1.16 (7H, m); 13C NMR (100 MHz, CDCl3) d
173.1, 148.1, 147.1, 138.2, 134.4, 133.3, 131.6, 128.6, 127.9, 126.1, 125.4, 124.4,
123.8, 123.0, 117.2, 109.9, 108.7, 61.5, 55.5, 55.3, 46.3, 44.5, 39.8, 36.4, 31.0,
22.6, 21.9, 18.5; IR (neat, cmꢀ1) 2932, 2857, 1678, 1520, 1411, 1254, 1151,
1028, 804, 779.
yields without change of the diastereomeric ratio. Reduction of 9
with Et3SiH4c provided octahydroindol-2-one 10 as a major prod-
uct (68%) and its isomer 11 as a minor product (23%). The spectral
data10 of these compounds were identical to those published in the
literature4c {10: ½a D30
ꢁ
64.2, lit. ½a 2D6
ꢁ
65.6; 11: ½a 3D0
ꢁ
ꢀ71.4, lit. ½a 2D6
ꢁ
ꢀ73.0} (Scheme 2).