Zingle et al.
JOCArticle
SCHEME 1. 1-Deoxy-D-xylulose 5-Phosphate Reducto-Isomerase (DXR) and Its Inhibitors (1-4)
by the two oxygen atoms of the hydroxamate moiety of the
antibiotic, and a second one where the negatively charged
phosphonate group is anchored by several hydrogen bonds in
a specific positively charged pocket. These two functional
groups involved in the antibiotic binding are connected by a
spacer of three methylene groups.8 Fosmidomycin 1 and its
analogue, FR-900098 2 (Scheme 1), are effective antimalarial
agents with good tolerability and rapid onset of action, but late
recrudescence and fast clearance preclude their use alone
in a single drug treatment.9 In the case of Mycobacterium
tuberculosis, the inefficiency of fosmidomycin to inhibit its
growth was due to a lack of uptake.10
yielding, on the one hand, phosphate,11 carboxylate,12 sulfo-
nate,13 sulfone,13 or sulfamate11-13 analogues and various
phosphonate diester prodrugs14 and on the other hand
rigidified carbon spacers with a cyclopropyl15or a cyclopen-
tyl ring,16a spacers with an aryl substituent in the R position
of the phosphonate,16 or spacers including oxa groups.17 We
previously reported the synthesis of the two reverse phos-
phonohydroxamic acids 3 and 4 (Scheme 1), which revealed
as potent inhibitors of the E. coli DXR the natural anti-
biotics 1 and 2. The N-methylated derivative 4 is much more
effective than the non-N-methylated compound 3 and is
nearly as efficient as fosmidomycin in enzyme assays.18
The same observation has been reported for FR-900098 2,
an analogue of fosmidomycin bearing an acetyl group in
place of the formyl group.7,8
Although X-ray crystal structures of DXR in complex
with fosmidomycin have been solved, the rational design of
new potent inhibitors by docking methods is not obvious.19
We present here the synthesis and the biological activity of
analogues of the two phosphonohydroxamic acids 3 and 4.
On the one hand, the influence of the length of the carbon
spacer and the replacement of the N-methyl group of 3 by an
ethyl group on the inhibitory activity was investigated. On
the other hand the phosphonate anchor of 3 and 4 was
replaced by other acidic bioisosters such as a carboxylate,
which displays a planar geometry, or a sulfonate sharing with
the phosphonate a pyramidal geometry around the central
atom.20
Investigations are presently oriented toward the design of
fosmidomycin analogues with improved pharmacological
properties. Attention was mostly focused on modifications
of the phosphonate group and the three-carbon spacer,
(8) (a) Steinbacher, S.; Kaiser, J.; Eisenreich, W.; Huber, R.; Bacher, A.;
Rohdich, F. J. Biol. Chem. 2003, 278, 18401–18407. (b) Mac Sweeney, A.;
Lange, R.; Fernandes, R. P. M.; Schulz, H.; Dale, G. E.; Douangamath, A.;
Proteau, P. J.; Oefner, C. J. Mol. Biol. 2005, 345, 115–127.
(9) Borrmann, S.; Issifou, S.; Esser, G.; Adegnika, A. A.; Ramharter, M.;
Matsiegui, P.-B.; Oyakhirome, S.; Mawili-Mboumba, D. P.; Missinou,
M. A.; Kun, J. F. J.; Jomaa, H.; Kremsner, P. G. J. Infect. Dis. 2004, 190,
1534–1540.
(10) (a) Dhiman, R. K.; Schaeffer, M. L.; Bailey, A.-M.; Testa, C. A.;
Scherman, H.; Crick, D. C. J. Bacteriol. 2005, 187, 8395–8402. (b) Brown, A.
C.; Parish, T. BMC Microbiol. 2008, 8, 78.
(11) Woo, Y.-H; Fernandes, R. P. M.; Proteau, P. J. Bioorg. Med. Chem.
2006, 14, 2375–2385.
(12) Kurz, T.; Geffken, D.; Wackendorff, C. Z. Naturforsch., B: Chem.
Sci. 2003, 58, 106–110.
€
(13) Perruchon, J.; Ortmann, R.; Altenkamper, M.; Silber, K.; Wiesner,
Results and Discussion
J.; Jomaa, H.; Klebe, G.; Schlitzer, M. ChemMedChem. 2008, 3, 1232–1241.
(14) (a) Reichenberg, A.; Wiesner, J.; Weidemeyer, C.; Dreiseidler, E.;
Sanderbrand, S.; Altincicek, B.; Beck, E.; Schlitzer, M.; Jomaa, H. Bioorg.
Syntheses of C3 and C5 Analogues of Hydroxamates 3 and
4, and of the N-Ethyl C4 Analogue. The hydroxamates 11a,
11b, 14a, 14b, and 15 were obtained by using the same
strategy as that utilized for the syntheses of the C4 derivatives
3 and 4 previously described (Scheme 2).18
Synthesis of Carboxylate Isosters 19a and 19b. The synthe-
ses of the carboxylic acid 19a and of its N-methylated
derivative 19b are shown in Scheme 3. The first step was
the introduction of the hydroxamic acid group. Treatment of
€
Med. Chem. Lett. 2001, 11, 833–835. (b) Schluter, K.; Walter, R. D.;
Bergmann, B.; Kurz, T. Eur. J. Med. Chem. 2006, 41, 1385–1397. (c)
Devreux, V.; Wiesner, J.; Goeman, J. L.; Van der Eycken, J.; Jomaa, H.;
Van Calenbergh, S. J. Med. Chem. 2006, 49, 2656–2660. (d) Ortmann, R.;
Wiesner, J.; Reichenberg, A.; Henschker, D.; Beck, E.; Jomaa, H.; Schlitzer,
M. Bioorg. Med. Chem. Lett. 2003, 13, 2163–2166. (e) Kurz, T.; Schlueter, K.;
Kaula, U.; Bergmann, B.; Walter, R. D.; Geffken, D. Bioorg. Med. Chem.
2006, 14, 5121–5135. (f) Kurz, T.; Behrendt, C.; Kaula, U.; Bergmann, B.;
Walter, R. D. Aust. J. Chem. 2007, 60, 154–158. (g) Kurz, T.; Behrendt, C.;
Pein, M.; Kaula, U.; Bergmann, B.; Walter, R. D. Arch. Pharm. 2007, 340,
661–666.
(15) Ortmann, R.; Wiesner, J.; Reichenberg, A.; Henschker, D.; Beck, E.;
Jomaa, H.; Schlitzer, M. Arch. Pharm. 2005, 338, 305–314.
(16) (a) Haemers, T.; Wiesner, J.; Busson, R.; Jomaa, H.; Van Calenbergh,
S. Eur. J. Org. Chem. 2006, 17, 3856–3863. (b) Haemers, T..; Wiesner, J.;
Van Poecke, S.; Goeman, J.; Henschker, D.; Beck, E.; Jomaa, H.; Van
Calenbergh, S. Bioorg. Med. Chem. Lett. 2006, 16, 1888–1891. (c) Devreux,
V.; Wiesner, J.; Jomaa, H.; Van der Eycken, J.; Van Calenbergh, S. Bioorg.
Med. Chem. Lett. 2007, 13, 4920–4923. (d) Devreux, V.; Wiesner, J.; Jomaa,
H.; Rozenski, J.; Van der Eycken, J.; Van Calenbergh, S. J. Org. Chem. 2007,
72, 3783–3789. (e) Van der Jeught, S.; Stevens, C. V.; Dieltiens, N. Synlett
2007, 20, 3183–3187.
(17) Haemers, T.; Wiesner, J.; Giessmann, D.; Verbrugghen, T.; Hillaert,
U.; Ortmann, R.; Jomaa, H.; Link, A.; Schlitzer, M.; Van Calenbergh, S.
Bioorg. Med. Chem. 2008, 16, 3361–3371.
(18) Kuntz, L.; Tritsch, D.; Grosdemange-Billiard, C.; Hemmerlin, A.;
Willem, A.; Bach, T. J.; Rohmer, M. Biochem. J. 2005, 386, 127–135.
ꢀ
ꢀ
ꢀ
(19) Merckle, L.; de Andres-Gomez, A.; Dick, B.; Cox, R. J.; Godfrey,
C. R. A. ChemBioChem 2005, 6, 1866–1874.
(20) Macchiarulo, A.; Pellicciari, R. J. Mol. Graphics Model. 2007, 26,
728–739.
3204 J. Org. Chem. Vol. 75, No. 10, 2010