zymes;12 alternatively, they may be excellent inhibitors of
different glycosidases.13 For example, L-swainsonine (7)
inhibits R-rhamnosidase14 rather than R-mannosidases, and
the C-methyl analogue 8 is an even more potent inhibitor of
naringinase.15 (-)-Steviamine and its enantiomer may also
be viewed as bicyclic analogues of the iminolyxitols 9 and
ent-9; 9 is a very potent, and ent-9 a weak, competitive
inhibitor of R-galactosidases.16
Retrosynthesis for 2 (Scheme 1) suggested that, starting
from the D-ribose-derived cyclic nitrone 10,17 (+)-steviamine
Scheme 1. Retrosynthesis of (+)-Steviamine (2)
Figure 1. Iminosugars related to (-)-steviamine.
(2) could be synthesized efficiently through the diastereo-
selective addition of Grignard reagent 11, followed by
annulation, via either intramolecular reductive amination or
SN2 displacement.
According to the retrosynthetic analysis, we commenced
the synthesis by making the key intermediate, ketone 13,
the first example of a new class of indolizidine alkaloid in
which an alkyl group is attached to the piperidine ring.
Polyhydroxylated indolizidines, such as castanospermine (5)
from Castanospermum australe5 (an inhibitor of R-glucosi-
dases) and swainsonine (6) from Swainsona canescens6 (an
inhibitor of R-mannosidases), were among the first sugar
mimics recognized. Simple derivatives of castanospermine
are in development for the treatments of dengue virus7 and
of HCV infections;8 swainsonine (6) has potential as a
chemotherapeutic agent for the treatment of cancer.9
Nearly 200 iminosugars in which the ring oxygen of the
furanose or pyranose has been replaced by nitrogen have
been isolated from plants or bacteria.10 Many of the
enantiomers11 of the naturally occurring alkaloids are
themselves even more potent inhibitors of the same en-
(12) (a) Scofield, A. M.; Fellows, L. E.; Nash, R. J.; Fleet, G. W. J.
Life Sci. 1986, 39, 645–651. (b) Yu, C. Y.; Asano, N.; Ikeda, K.; Wang,
M. X.; Butters, T. D.; Wormald, M. R.; Dwek, R. A.; Winters, A. L.; Nash,
R. J.; Fleet, G. W. J. Chem. Commun. 2004, 1936–1937. (c) Best, D.; Wang,
C.; Weymouth-Wilson, A. C.; Clarkson, R. A.; Wilson, F. X.; Nash, R. J.;
Miyauchi, S.; Kato, A.; Fleet, G. W. J. Tetrahedron: Asymmetry 2010, 21,
311–319.
(13) (a) Fleet, G. W. J.; Smith, P. W.; Evans, S. V.; Fellows, L. E.
Chem. Commun. 1984, 1240–1241. (b) Park, C.; Meng, L.; Stanton, L. H.;
Collins, R. E.; Mast, S. W.; Yi, X.; Strachan, H.; Moremen, K. W. J. Biol.
Chem. 2005, 280, 37204–37216. (c) Hakansson, A. E.; van Ameijde, J.;
Guglielmini, L.; Horne, G.; Nash, R. J.; Evinson, E. L.; Kato, A.; Fleet,
G. W. J. Tetrahedron: Asymmetry 2007, 18, 282–289.
(5) Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce,
R. J.; Arnold, E.; Clardy, J. Phytochemistry 1981, 20, 811–814.
(6) Colegate, S. M.; Dorling, P. R.; Huxtable, C. R. Aust. J. Chem. 1979,
32, 2257–2264.
(14) (a) Davis, B.; Bell, A. A.; Nash, R. J.; Watson, A. A.; Griffiths,
R. C.; Jones, M. G.; Smith, C.; Fleet, G. W. J. Tetrahedron Lett. 1996, 37,
8565–8568. (b) Guo, H.; O’Doherty, G. A. Org. Lett. 2006, 8, 1609-
1612.
(7) Whitby, K.; Pierson, T. C.; Geiss, B.; Lane, K.; Engle, M.; Zhou,
Y.; Doms, R. W.; Diamond, M. S. J. Virol. 2005, 79, 8698–8706.
(8) Durantel, D. Curr. Opin. InVest. Drugs 2009, 10, 860–870.
(9) (a) Klein, J. L. D.; Roberts, J. D.; George, M. D.; Kurtzberg, J.;
Breton, P.; Chermann, J. C.; Olden, K. Br. J. Cancer 1999, 80, 87–95. (b)
Lagana, A.; Goetz, J. G.; Cheung, P.; Raz, A.; Dennis, J. W.; Nabi, I. R.
Mol. Cell. Biol. 2006, 26, 3181–3193.
(15) Hakansson, A. E.; van Ameijde, J.; Horne, G.; Nash, R. J.;
Wormald, M. R.; Kato, A.; Besra, G. S.; Gurcha, S.; Fleet, G. W. J.
Tetrahedron Lett. 2008, 49, 179–184.
(16) (a) Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S. V.;
Fellows, L. E.; Nash, R. J. Tetrahedron Lett. 1985, 26, 3127–3130. (b)
Mercer, T. B.; Jenkinson, S. F.; Nash, R. J.; Miyauchi, S.; Kato, A.; Fleet,
G. W. J. Tetrahedron: Asymmetry 2009, 20, 2368–2373.
(10) (a) Compain, P.; Martin, O. R. Iminosugars: from synthesis to
therapeutic application; John Wiley & Sons: New York, 2007; ISBN-0-
470-03391-3. (b) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J.
Tetrahedron: Asymmetry 2000, 11, 1645–1680. (c) Watson, A. A.; Fleet,
G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phytochemistry 2001,
56, 265–295.
(17) For the synthesis of nitrone 10 see: (a) Pillard, C.; Desvergnes, V.;
Py, S. Tetrahedron Lett. 2007, 48, 6209–6213. (b) Tsou, E.-L.; Yeh, Y.-
T.; Liang, P.-H.; Cheng, W.-C. Tetrahedron 2009, 65, 93–100. (c) Wang,
W.-B.; Huang, M.-H.; Li, Y.-X.; Rui, P.-X.; Hu, X.-G.; Zhang, W.; Su,
J.-K.; Zhang, Z.-L.; Zhu, J.-S.; Xu, W.-H.; Xie, X.-Q.; Jia, Y.-M.; Yu, C.-
Y. Synlett 2010, 488–492. For recent reviews of enantiopure cyclic nitrones
see: (d) Revuelta, J.; Cicchi, S.; Goti, A.; Brandi, A. Synthesis 2007, 485–
504. (e) Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A.
Chem.sEur. J. 2009, 15, 7808–7821. For examples on the syntheses of
polyhydroxylated indolizidines Via Grignard addition to nitrones, see: (f)
Giovannini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1995, 60, 5706–
5707. (g) Cardona, F.; Moreno, G.; Guarna, F.; Vogel, P.; Schuetz, C.;
Merino, P.; Goti, A. J. Org. Chem. 2005, 70, 6552–6555. (h) Delso, I.;
Tejero, T.; Goti, A.; Merino, P. Tetrahedron 2010, 66, 1220–1227.
(11) (a) d’Alonzo, D.; Guaragna, A.; Palumbo, G. Curr. Med. Chem.
2009, 16, 473–505. (b) Ble´riot, Y.; Gretzke, D.; Kru¨lle, T. M.; Butters,
T. D.; Dwek, R. A.; Nash, R. J.; Asano, N.; Fleet, G. W. J. Carbohydr.
Res. 2005, 340, 2713–2718. (c) Kato, A.; Kato, N.; Kano, E.; Adachi, I.;
Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.; Asano,
N. J. Med. Chem. 2005, 48, 2036–2044. (d) Asano, N.; Ikeda, K.; Yu, L.;
Kato, A.; Takebayashi, K.; Adachi, I.; Kato, I.; Ouchi, H.; Takahata, H.;
Fleet, G. W. J. Tetrahedron: Asymmetry 2005, 16, 223–229.
Org. Lett., Vol. 12, No. 11, 2010
2563