1,10-Bis[p-(aminomethyl)phenyl]-1,4,7,10-tetraoxadecane (5)
based on the chemical shift change by the titration experiment fol-
lowed by non-linear least-square data treatment method with 95%
confidence interval applied by Student’s t-distribution reported by
Hirose.17 The volume change for the titrated solutions was properly
accounted for in the Hirose’s method. The limiting chemical shifts,
D0, which mean the difference in d values for the protons of the
host 1 in the uncomplexed and fully complexed species, and the
standard deviations as the curve fitting errors for the association
constants were determined by SOLVSTAT.22
To a suspension of LiAlH4 (4.56 g, 0.120 mol) in THF (100 ml),
a solution of 4 (5.48 g, 0.0156 mol) in THF (170 ml) was added
dropwise over a period of 40 min at 0 ◦C. The resulting mixture was
stirred for 30 min at room temperature and then refluxed for 4 h.
After the mixture was cooled to room temperature, water (3 ml),
15% aqueous NaOH (3 ml) and water (8 ml) were added by turns.
The mixture was stirred for 30 min and filtered. Water (250 ml) was
added to the mixture and then it was extracted with CH2Cl2 (3 ¥
250 ml). The organic layer was dried over anhydrous magnesium
sulfate, filtered, and the solvent was evaporated to yi◦eld the crude
product 5 as a white solid (4.07 g, 72%). M.p. 131-135 C; 1H NMR
(CDCl3, 300 MHz): d (ppm) 3.76 (s, 4H), 3.79 (s, 4H), 3.86 (t, J =
4.9 Hz, 4H), 4.12 (t, J = 4.9 Hz, 4H) 6.88 (d, J = 8.7 Hz, 4H),
7.21 (d, J = 8.7 Hz, 4H); 13C NMR (CDCl3, 75 MHz): d (ppm)
45.9, 67.5, 69.8, 70.8, 114.7, 128.2, 135.8, 157.7; elemental analysis
calcd (%) for C20H28N2O4: C 66.64, H 7.83; found: C 66.62, H 7.80.
Acknowledgements
We thank Profs. Y. Tobe and K. Hirose of Osaka University for
valuable advice about quantitative 1H NMR titration experiments.
Notes and references
1 V. Balzani, A. Credi and M. Venturi, Molecular Devices and Machines-
A Journey into the Nano World, Wiley-VCH, Weinheim, 2003; V.
Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew. Chem.,
Int. Ed., 2000, 39, 3348; K. Kinbara and T. Aida, Chem. Rev., 2005,
105, 1377; E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int.
Ed., 2007, 46, 72.
2 M. J. Chmielewski, J. J. Davis and P. D. Beer, Org. Biomol. Chem., 2009,
7, 415; S. W. Thomas III, G. D. Joly and T. M. Swager, Chem. Rev.,
2007, 107, 1339; D. T. McQuade, A. E. Pullen and T. M. Swager, Chem.
Rev., 2000, 100, 2537.
3 K. Hiratani, M. Kaneyama, Y. Nagawa, E. Koyama and M. Kanesato,
J. Am. Chem. Soc., 2004, 126, 13568; Y. Nagawa, J. Suga, K. Hiratani,
E. Koyama and M. Kanesato, Chem. Commun., 2005, 749; N. Kameta,
Y. Nagawa, M. Karikomi and K. Hiratani, Chem. Commun., 2006,
3714.
4 Y. Tachibana, N. Kihara, Y. Ohga and T. Takata, Chem. Lett., 2000,
806; P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan and R. J. M.
Nolte, Nature, 2003, 424, 915; Y. Tachibana, N. Kihara and T. Takata,
J. Am. Chem. Soc., 2004, 126, 3438.
5 P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D.
Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and D. J. Williams, Angew.
Chem., Int. Ed. Engl., 1995, 34, 1865; P. R. Ashton, P. J. Campbell,
E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo, N. Spencer, J. F.
Stoddart, P. A. Tasker, A. J. P. White and D. J. Williams, Chem.–Eur. J.,
1996, 2, 709; J. W. Jones and H. W. Gibson, J. Am. Chem. Soc., 2003, 125,
7001; H. W. Gibson, H. Wang, K. Bonrad, J. W. Jones, C. Slebodnick,
L. N. Zackharov, A. L. Rheingold, B. Habenicht, P. Lobue and A. E.
Ratliff, Org. Biomol. Chem., 2005, 3, 2114; F. Huang, J. W. Jones and
H. W. Gibson, J. Org. Chem., 2007, 72, 6573; H. W. Gibson, A. Farcas,
J. W. Jones, Z. Ge, F. Huang, M. Vergne and D. M. Hercules, J. Polym.
Sci., Part A: Polym. Chem., 2009, 47, 3518; H. W. Gibson, Z. Ge, J. W.
Jones, K. Harich, A. Pederson and H. C. Dorn, J. Polym. Sci., Part A:
Polym. Chem., 2009, 47, 6472.
6 P. R. Ashton, D. Philp, N. Spencer and J. F. Stoddart, J. Chem. Soc.,
Chem. Commun., 1992, 1124; H. W. Gibson and D. S. Nagvekar,
Can. J. Chem., 1997, 75, 1375; W. S. Bryant, J. W. Jones, P. E. Mason,
I. A. Guzei, A. L. Rheingold, D. S. Nagvekar and H. W. Gibson, Org.
Lett., 1999, 1, 1001; F. Huang, D. S. Nagvekar, X. Zhou and H. W.
Gibson, Macromolecules, 2007, 40, 3561; A. M.-P. Pederson, R. C.
Vetor, M. A. Rouser, F. Huang, C. Slebodnick, D. V. Schoonover and
H. W. Gibson, J. Org. Chem., 2008, 73, 5570; A. M.-P. Pederson, E. M.
Ward, D. V. Schoonover, C. Slebodnick and H. W. Gibson, J. Org.
Chem., 2008, 73, 9094; M. Lee, D. V. Schoonover, A. P. Gies, D. M.
Hercules and H. W. Gibson, Macromolecules, 2009, 42, 6483.
7 A. S. Lane, D. A. Leigh and A. Murphy, J. Am. Chem. Soc., 1997, 119,
11092.
1,7-Diaza-13,16,19,22-tetraoxa-2,6-dioxo-3,5,9,12,23,26-
tribenzocycloheptacosane (1)
5 (1.02 g, 2.83 ¥ 10-3 mol) was dissolved in THF (140 ml).
Separately, isophthaloyl dichloride (0.580 g, 2.86 ¥ 10-3 mol) was
dissolved in dry THF (40 ml). A three necked round-bottomed
flask (500 ml) was charged with THF (150 ml) and NEt3 (2 ml).
Via two pressure-equalizing dropping funnels, both solutions were
added simultaneously dropwise to the flask with stirring over a
period of 2 h at room temperature. The reaction mixture was
stirred under argon atmosphere overnight at room temperature.
The solvent was evaporated under reduced pressure to leave a pale
yellow solid. The residue was purified by silica gel chromatography
(eluent: CHCl3) to give the pure product 1 as a white solid
(0.550 g, 40%). An analytical sample of 1 was obtained after
recrystallization from dioxane–toluene. M.p.: 228-233 ◦C; 1H
NMR (CDCl3, 300 MHz): d (ppm) 3.72 (s, 4H), 3.85 (t, J =
4.3 Hz, 4H), 4.10 (t, J = 4.3 Hz, 4H), 4.46 (d, J = 5.1 Hz, 4H)
6.51 (brs, 2H), 6.80 (d, J = 8.6 Hz, 4H), 7.18 (d, J = 8.6 Hz,
4H), 7.45 (t, J = 7.8 Hz, 1H), 7.69 (s, 1H), 7.99 (d, J = 7.8 Hz,
2H); 1H-NMR (DMSO-d6, 300 MHz): d (ppm) 3.55 (s, 4H), 3.67-
3.71 (m, 4H), 4.06-4.09 (m, 4H), 4.37 (d, J = 5.2 Hz, 4H), 6.88
(d, J = 8.4 Hz, 4H), 7.25 (d, J = 8.4 Hz, 4H), 7.56 (t, J =
7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 2H), 8.01 (s, 1H), 8.61 (t, J =
5.2 Hz, 2H); 13C NMR (75 MHz, DMSO-d6): d (ppm) 42.7, 67.4,
68.9, 70.2, 114.6, 125.8, 128.9, 129.6, 130.2, 131.1, 135.2, 157.8,
166.4; HRMS(FAB): m/z: for C28H30N2O6: calcd: 490.2104; found:
490.2107; elemental analysis calcd (%) for C28H30N2O6: C 68.56,
H 6.16; found: C 68.31, H 6.17.
Determination of the association constants (Ka)
All titration results were acquired by a Varian 300 MHz NMR
spectrometer and performed with the starting concentration of
host 1 at 22 mM for 2a and 3, and 2.0 mM for 2b. Appropriate
aliquots of guests 2a and 3 at 890 mM, and 2b at 20 mM solutions
with a microsyringe. The protons (c, d, f, and g) for the host 1
were followed during the course of the titration. The complexation
equilibrium was fast on the NMR time scale and gave signals at
weight averaged chemical shifts of the free and complexed host.
The association constants (Ka) for the complexation were obtained
8 J. P. Collin, P. Gavina and J. P. Sauvage, Chem. Commun., 1996,
2005.
9 N. C. Chen, P. Y. Huang, C. C. Lai, Y. H. Liu, Y. Wang, S. M. Peng
and S. H. Chiu, Chem. Commun., 2007, 4122; F. Huang, C. Slebodnick,
E. J. Mahan and H. W. Gibson, Tetrahedron, 2007, 63, 2875; A. M.-P.
Pederson, E. M. Ward, D. V. Schoonover, C. Slebodnick and H. W.
Gibson, J. Org. Chem., 2008, 73, 9094; S. Li, F. Huang, C. Slebodnick,
2412 | Org. Biomol. Chem., 2010, 8, 2408–2413
This journal is
The Royal Society of Chemistry 2010
©