Organization of Pt4 Rings
A R T I C L E S
Chart 1. Reported N2O2 Pt2+ Schiff Base Monomer and
Conceptual Evolution of the Monomer into a Head-to-Tail
Self-Assembling Metallocycle
a natural example of head-to-tail assembling supramolecules,
and synthetic analogues are known to exhibit columnar ag-
gregation.13
In this article, we describe a new route to Pt-pyridyl type
metallocycles using a head-to-tail synthetic strategy. Self-
recognition is achieved by incorporating a coordinating pyridyl
ligand and an open (or solvent-occupied) Pt coordination site
into the same molecule. Specifically, tetrameric metallocycles
are constructed in a selective 12-component, one-pot self-
assembly directed by tetradentate Schiff base N-ONO donor
proligands formed either in situ or prior to metalation. Su-
pramolecular aggregation of individual Pt4 metallocycles into
columnar arrays is observed and bestows liquid crystalline
properties upon the materials. These parallel columnar arrays
are exciting materials with potential for anisotropic Pt-Pt
interactions.
complexes, and highly charged metallocycles are formed.6 This
approach has become a paradigm for development of functional
polyhedra, catenanes, and other unique architectures.7 Despite
the variety of interesting structures that have emerged from this
method, significant limitations remain. For example, the high
charge of the metallocycle has prevented the observation of
stacking in solution, a property that could be used to assemble
nanotubes that include metal-metal bonding.8 Also, only high
symmetry objects are usually accessible through this method.
Neutral Schiff base platinum(II) complexes with trans-N2O2
donors, such as the monomer depicted in Chart 1, have been
reported,9 and Bosnich demonstrated that similar complexes are
Results and Discussion
We set out to construct the Pt-containing metallocycles shown
on the right-hand side of Chart 1. To test the feasibility of this
approach and to determine the expected ring size, we first
prepared model complex 1, where the pyridyl group, essential
for self-recognition, is substituted by a phenyl group. Single-
crystal X-ray diffraction of complex 1, depicted in Figure 1,
shows that the Pt2+ is complexed by the ONO Schiff base
pocket, and the fourth coordination site is occupied by an
S-bound DMSO molecule.14 Besides the expected rotation of
the peripheral phenyl group to relieve steric repulsion between
protons (normal for a biphenyl-type system), the molecule is
nearly planar. Moreover, the angle of interest for self-assembly,
shown in Figure 1a, is approximately 90°, indicating that head-
to-tail self-assembly should direct formation of cyclic tetramers
if the phenyl group is replaced by a 3-pyridyl unit.
sterically unencumbered for one-dimensional assembly.10
A
solid-state structure revealed close axial Pt · · ·Pt contacts (3.26
Å) between a platinum(II) Schiff base complex and metalated
bis(tert-pyridyl) pincer hosts, facilitated by π-π and metallo-
philic interactions.11 With the goal of assembling cycles that
may ultimately show metal-metal bonding in a columnar
orientation, we envisioned a ligand system that codes for the
head-to-tail self-assembly of disk-shaped platinum-containing
metallocycles as illustrated in Chart 1.
When a single molecule is outfitted with a donor-acceptor
pair appropriately distributed to prohibit intramolecular recogni-
tion, one end of the molecule recognizes the other end in an
intermolecular fashion. The spatial arrangement of this self-
recognition determines whether polymers or macrocycles are
isolated. Head-to-tail self-assembly facilitated in this fashion
has been used to prepare a variety of supramolecules.12 Through
hydrogen bonds and the aid of an alkali metal, G-quartets are
When a solution of model complex 1 in DMSO-d6 was titrated
with pyridine and monitored by 1H NMR spectroscopy,
resonances assigned to both free and coordinated pyridine were
evident (Figure 2). From integration of these resonances, the
equilibrium constant (Kpyr) was determined to be 35 ( 14 mol-1
(12) A few examples: (a) Berggren, G.; Thapper, A.; Huang, P.; Kurz, P.;
Eriksson, L.; Styring, S.; Anderlund, M. F. Dalton Trans. 2009, 10044–
10054. (b) Ferna´ndez, G.; Pe´rez, E. M.; Sa´nchez, L.; Mart´ın, N. Angew.
Chem., Int. Ed. 2008, 47, 1094–1097. (c) Asadi, A.; Patrick, B. O.;
Perrin, D. M. J. Am. Chem. Soc. 2008, 130, 12860–12861. (d) Jensen,
R. A.; Kelley, R. F.; Lee, S. J.; Wasielewski, M. R.; Hupp, J. T.;
Tiede, D. M. Chem. Commun. 2008, 1886–1888. (e) Willison, S. A.;
Krause, J. A.; Connick, W. B. Inorg. Chem. 2008, 47, 1258–1260. (f)
Zhao, S.-B.; Wang, R.-Y.; Wang, S. J. Am. Chem. Soc. 2007, 129,
3092–3093. (g) Ferna´ndez, J. J.; Ferna´ndez, A.; Va´zquez-Garc´ıa, D.;
Lo´pez-Torres, M.; Sua´rez, A.; Go´mez-Blanco, N.; Vila, J. M. Eur.
J. Inorg. Chem. 2007, 5408–5418. (h) Asadi, A.; Patrick, B. O.; Perrin,
D. M. J. Org. Chem. 2007, 72, 466–475. (i) Brasey, T.; Scopelliti,
R.; Severin, K. Inorg. Chem. 2005, 44, 160–162. (j) Fenniri, H.;
Mathivanan, P.; Vidale, K. L.; Sherman, D. M.; Hallenga, K.; Wood,
K. V.; Stowell, J. G. J. Am. Chem. Soc. 2001, 123, 3854–3855. (k)
Carina, R. F.; Williams, A. F.; Bernardinelli, G. Inorg. Chem. 2001,
40, 1826–1832. (l) Matsumoto, N.; Motoda, Y.; Matsuo, T.; Na-
kashima, T.; Re, N.; Dahan, F.; Tuchagues, J.-P. Inorg. Chem. 1999,
38, 1165–1173. (m) Stang, P. J.; Whiteford, J. A. Res. Chem.
Intermediat. 1996, 22, 659–665. (n) Kajiwara, T.; Ito, T. J. Chem.
Soc., Chem. Commun. 1994, 1773–1774.
(6) (a) Lee, J.; Ghosh, K.; Stang, P. J. J. Am. Chem. Soc. 2009, 131,
12028–12029. (b) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang,
P. J. Acc. Chem. Res. 2009, 42, 1554–1563. (c) Northrop, B. H.; Yang,
H.-B.; Stang, P. J. Chem. Commun. 2008, 5896–5908. (d) Stang, P. J.;
Cao, D. H. J. Am. Chem. Soc. 1994, 116, 4981–4982.
(7) (a) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int.
Ed. 2009, 48, 3418–3438. (b) Ghosh, K.; Hu, J.; White, H. S.; Stang,
P. J. J. Am. Chem. Soc. 2009, 131, 6695–6697. (c) Yamashita, K.-I.;
Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850–1851.
(d) Yoshizawa, M.; Ono, K.; Kumazawa, K.; Kato, T.; Fujita, M.
J. Am. Chem. Soc. 2005, 127, 10800–10801. (e) Sun, S.-S.; Stern,
C. L.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2004, 126, 6314–
6326. (f) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000,
100, 853–908.
(8) For solid-state stacking, see the following: Stang, P. J.; Cao, D. H.;
Saito, S.; Arif, A. M. J. Am. Chem. Soc. 1995, 117, 6273–6283.
(9) Motschi, H.; Nussbaumer, C.; Pregosin, P. S.; Bachechi, F.; Mura,
P.; Zambonelli, L. HelV. Chim. Acta 1980, 63, 2071–2086.
(10) (a) Crowley, J. D.; Steele, I. M.; Bosnich, B. Inorg. Chem. 2005, 44,
2989–2991. (b) Crowley, J. D.; Steele, I. M.; Bosnich, B. Eur. J. Inorg.
Chem. 2005, 3907–3917. (c) Crowley, J. D.; Goshe, A. J.; Bosnich,
B. Chem. Commun. 2003, 392–393.
(13) (a) Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668–698. (b) Mezzina,
E.; Mariani, P.; Itri, R.; Masiero, S.; Pieraccini, S.; Spada, G. P.;
Spinozzi, F.; Davis, J. T.; Gottarelli, G. Chem.sEur. J. 2001, 7, 388–
395.
(14) X-ray crystal data for 1 grown from DMSO: C21H18.5NO3PtS, Mw
)
560.02 g mol-1, yellow needle, orthorhombic, space group P212121,
a ) 5.5909(5) Å, b ) 17.6944(17) Å, c ) 19.0577(18) Å, V )
1885.3(3) Å3, Z ) 4, R1 ) 0.0441, wR2 ) 0.1146.
(11) Goshe, A. J.; Steele, I. M.; Bosnich, B. J. Am. Chem. Soc. 2003, 125,
444–451.
9
J. AM. CHEM. SOC. VOL. 132, NO. 22, 2010 7669