2524
G. Evindar et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2520–2524
Table 4
[c-
35S]GTP functional activity on S1P1 and S1P3 receptor subtypes
R
X
n
H2N
Me
O
O
Y
P
OH
HO
Agonist
n
X
R
Y
hS1P1 EC50 (nM)
hS1P3 EC50 (nM)
S1P3/S1P1
S1P
PPI-4667-P
7a-P
—
2
2
2
2
1
1
—
O
CO
O
O
O
—
H
H
CF3
CF3
CF3
H
—
Amide
Amide
Amide
Imidazole
Imidazole
Imidazole
5.6
0.52
18.3
1.44
22.4
1.62
2.2
2.4
120
—
231
>3000
>3000
>3000
>3000
54.8
>164
>2083
>134
>1852
25
16i
21a-P
21b-P
21c-P
O
In summary, in pursuit of improving the agonist selectivity for
12
10
8
S1P receptor subtype 1 over subtype 3, we have identified a selec-
tivity enhancing moiety (SEM) in both phenylamide and phenyl-
imidazole series. The ortho-CF3 substitution adjacent to the tail
section of the pharmacophore was found to be an excellent SEM
with a general improvement of 100- to 500-fold in agonist selectiv-
ity for S1P receptor 1 over 3. We demonstrated the importance of
the SEM orientation leading to discovery of the selectivity enhanc-
ing orientation (SEO) for the CF3 group. In pursuit of improving
in vivo conversion of the pro-drug alcohol to phosphate drug, we
have discovered a potent and selective lead molecule, PPI-4955
(21b) with significant improvement in both receptor profile and
in vivo phosphorylation. PPI-4955 was selected as a preclinical
candidate for further evaluation and was found to be potent with
excellent dose responsiveness and overall pharmacodynamic prop-
erties upon oral administration. Further SAR studies will be re-
ported in due course.
6
4
2
0
Vehicle
0.3 mg/kg 1.0 mg/kg 3.0 mg/kg 10.0 mg/kg
PPI-4955 (21b)
Figure 2. Dose–response lymphopenia for lead compound PPI-4955 (21b) relative
to the vehicle.
pharmacophore (21c-P). All the phenylimidazole analogs also
showed a significant potency at both S1P receptor subtypes 4 and 5.
In order to confirm the agonist potency and selectivity, a number
of designed phosphates were further investigated in [c-
35S]GTP
References and notes
functional assay8 as reported in Table 4. The keto-compound 7a-P,
analogous to binding data, once again showed a relatively lower
in vitro activity with improved selectivity for S1P subtype 1 over 3.
The agonist 16i activity and selectivity were confirmed in the assay
and demonstrated the importance of the SEM group in the phenyla-
mide scaffold. In the phenylimidazole analogs, 21a-P was relatively
less potent with respect to the corresponding phenylamide analog
16i, but showed an improved selectivity for S1P1 over S1P3. The
phenylimidazole analog with a short tail region (21a-P, PPI-4955-
P) demonstrated over 10-fold improvement in agonist potency
while maintaining the high degree of selectivity. The des-CF3 analog
abolished selectivity and again confirmed the importance of the SEM
in both phenylamide and phenyimidazole pharmacophore.
Due to high in vivo conversion of PPI-4955 (21b) to PPI-4955-P
(21b-P) and the phosphate receptor profile, the alcohol was chosen
as a preclinical lead molecule for further evaluation. PPI-4955 was
investigated in an in vivo dose–response when orally administered
in mice. The agonist showed significant lymphopenia at all doses be-
tween 0.3 mg/kg and 10 mg/kg at 6 h post-dose in mice (Fig. 2).
Overall, PPI-4955 demonstrated excellent dose responsiveness
when administered orally at doses between 0.3 and 10 mg/kg with
maximal activity observed at doses of 1 mg/kg and above.
1. (a) Sugiyama, A.; Yatomi, Y.; Ozaki, Y.; Hashimoto, K. Cardiovasc. Res. 2000, 46,
119; (b) Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens, S.; Hof, R.;
Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C. A.; Zollinger, M.;
Lynch, K. R. J. Biol. Chem. 2002, 277, 21453; (c) Mandala, S.; Hajdu, R.; Bergstrom,
J.; Quackenbush, E.; Xie, J.; Milligan, J.; Thornton, R.; Shei, G.-J.; Card, D.;
Keohane, C. A.; Rosenbach, M.; Hale, J.; Lynch, C. L.; Rupprecht, K.; Parsons, W.;
Rosen, H. Science 2002, 296, 346.
2. (a) Matloubian, M.; Lo, C. G.; Cinamon, G.; Lesneski, M. J.; Xu, Y.; Brinkmann, V.;
Allende, M. L.; Proia, R. L.; Cyster, J. G. Nature 2004, 427, 355; (b) Goetzl, E. J.;
Graler, M. H. J. Leukocyte Biol. 2004, 76, 30.
3. Young, N.; Van Brocklyn, J. R. Scientific World J. 2006, 6, 946.
4. Cho, H.; Harrison, K.; Kehrl, J. H. Curr. Drug Targets—Immune, Endocrine Metab.
Disord. 2004, 4, 107.
5. (a) Evindar, G.; Bernier, S. G.; Kavarana, M. J.; Doyle, E.; Lorusso, J.; Kelley, M. S.;
Halley, K.; Hutchings, A.; Wright, A. D.; Saha, A. K.; Hannig, G.; Morgan, B. A.;
Westlin, W. F. Bioorg. Med. Chem. Lett. 2009, 19, 369; (b) Evindar, G.; Satz, A. L.;
Bernier, S. G.; Kavarana, M. J.; Doyle, E.; Lorusso, J.; Halley, K.; Hutchings, A.;
Kelley, M. S.; Wright, A. D.; Saha, A. K.; Hannig, G.; Morgan, B. A.; Westlin, W. F.
Bioorg. Med. Chem. Lett. 2009, 19, 2315.
6. Chueh, S.-C. J.; Kahan, B. Curr. Opin. Org. Transplant. 2003, 8, 288.
7. (R)-3-(tert-Butoxycarbonyl)-2,2,4-trimethyloxazolidine-4-carboxylic acid (6)
was
methylpropanoic acid in three steps in overall 55–70% yield. For alternative
synthesis of (R)-3-(tert-butoxycarbonyl)-2,2,4-trimethyloxazolidine-4-
synthesized
from
(S)-2-(tert-butoxycarbonylamino)-3-hydroxy-2-
carboxylic acid (6) see: Clemens, J. J.; Davis, M. D.; Lynch, K. R.; Macdonald, T.
L. Bioorg. Med. Chem. Lett. 2005, 15, 3568.
8. Davis, D. D.; Clemens, J. J.; Macdonald, T. L.; Lynch, R. K. J. Biol. Chem. 2005, 280,
9833.