Table 3 Oxidations of iso-propoxyarylsilanes 6 (route A, Scheme 2)
and diethylaminoarylsilanes 5 (route B, Scheme 2)a
Yield (%)
A: from 6
B: from 5 Entry
Yield (%)
A: from 6
B: from 5
Product
Product
Entry
1
A: 99
10
A: 90
B: 82e
B: 85
Scheme 3
functional group-tolerant, thus allowing this late-stage
phenolation protocol to be readily factored into a synthetic
pathway. Further studies into the reaction mechanism, and its
application in synthesis, will be reported in due course.
We thank the EPSRC (Advanced Research Fellowship to
E.A.A.; EP/E055273/1), the Clarendon Trust and Merton
College (S.B.), and the Royal Society for financial support.
A: 35
B: 99b
B: 90c
A: 74
B: 78
2
3
11
A: 99
B: 77
A: 52
B: 43
12
13
14
Notes and references
A: 94
B: 99
A: 87
B: 59
1 J. H. P. Tyman, Synthetic and Natural Phenols, Elsevier,
New York, 1996; Z. Rappoport, The Chemistry of Phenols,
Wiley-VCH, Weinheim, 2003.
2 P. Hanson, J. R. Jones, A. B. Taylor, P. H. Walton and
A. W. Timms, J. Chem. Soc., Perkin Trans. 2, 2002, 1135.
3 K. W. Anderson, T. Ikawa, R. E. Tundel and S. L. Buchwald,
J. Am. Chem. Soc., 2006, 128, 10694; B. J. Gallon, R. W. Kojima,
R. B. Kaner and P. L. Diaconescu, Angew. Chem., Int. Ed., 2007, 46,
4
5
6
A: 61d
B: 89d
A: 68f
B: 75f
7251; T. Schulz, C. Torborg, B. Schaffner, J. Huang, A. Zapf,
¨
¨
R. Kadyrov, A. Borner and M. Beller, Angew. Chem., Int. Ed., 2009,
A: 90
B: 87
A: —g
B: 76
48, 918; A. G. Sergeev, T. Schulz, C. Torborg, A. Spannenberg,
H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2009, 48, 7595;
A. Tlili, N. Xia, F. Monnier and M. Taillefer, Angew. Chem., Int.
Ed., 2009, 48, 8725; D. Zhao, N. Wu, S. Zhang, P. Xi, X. Su, J. Lan
and J. You, Angew. Chem., Int. Ed., 2009, 48, 8729; For a review,
see: M. C. Willis, Angew. Chem., Int. Ed., 2007, 46, 3402.
4 R. E. Maleczka, F. Shi, D. Holmes and M. R. Smith, J. Am. Chem.
Soc., 2003, 125, 7792; For a recent example and leading references,
see: Y.-H. Zhang and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 14654.
5 M.-C. A. Cordonnier, S. B. J. Kan and E. A. Anderson, Chem.
Commun., 2008, 5818.
6 K. Tamao, T. Kakui, M. Akita, T. Iwahara, R. Kanatani, J. Yoshida
and M. Kumada, Tetrahedron, 1983, 39, 983; K. Tamao, M. Kumada
and K. Maeda, Tetrahedron Lett., 1984, 25, 321; K. Tamao,
N. Ishida, T. Tanaka and M. Kumada, Organometallics, 1983, 2,
1694; G. R. Jones and Y. Landais, Tetrahedron, 1996, 52, 7599;
See also: I. Fleming, Chemtracts: Org. Chem., 1996, 9, 1.
7 For recent non-general examples, see: C. Huang and
V. Gevorgyan, J. Am. Chem. Soc., 2009, 131, 10844; H. Ihara
and M. Suginome, J. Am. Chem. Soc., 2009, 131, 7502.
8 For excellent examples, see: J. D. Sunderhaus, H. Lam and
G. B. Dudley, Org. Lett., 2003, 5, 4571; H. Lam, S. E. House and
G. B. Dudley, Tetrahedron Lett., 2005, 46, 3283; S. F. Tlais, H. Lam,
S. E. House and G. B. Dudley, J. Org. Chem., 2009, 74, 1876.
9 For some alternative methods, see: M. Hawthorne, J. Org. Chem.,
1957, 22, 1001; P. Beak and R. A. Brown, J. Org. Chem., 1982, 47,
34; M. Iwao, T. Iihama, K. K. Mahalanabis, H. Perrier and
V. Snieckus, J. Org. Chem., 1989, 54, 24; K. A. Parker and
K. A. Koziski, J. Org. Chem., 1987, 52, 674; M. Julia, S.
Pfeuty-SaintJalmes, K. Ple, J. N. Verpeaux and G. Hollingworth,
15
16
A: 72
B: 88
A: 99
B: 99
7
8
A: 81
B: 99
A: 99
B: 99
17
—
A: 81
B: 99e
9
a
Conditions: TBAF (0.1 equiv.), KHCO3 (2.0 equiv.), H2O2
b
(6.0 equiv.), MeOH–THF (1 : 1), rt, 16 h. From 1b. From 2d.
c
d
NMR yield based on an internal standard, due to product volatility
f
(ESIw).e 1.0 equiv. of TBAF. 2.0 equiv. of KF, 60 1C. The aryl
TBS ether was also cleaved.
g
Norrby15 suggest that the reaction proceeds via a pentacoordinate
silicon ‘‘ate’’ complex 9 (Scheme 3), as originally proposed by
Tamao et al.14 At this point, productive nucleophilic attack by
peroxide anion (followed by aryl migration, 10-11) must be
balanced against competitive loss of alkoxide to give fluorosilane
12. The relative reactivity of such fluorosilanes towards oxidation
remains somewhat uncertain,14 although additional fluoride ion
could reactivate 12 towards oxidation (via 13) perhaps accounting
for the need for further fluoride in these cases.
´
Bull. Soc. Chim. Fr., 1996, 133, 15; F. Trecourt, M. Mallet,
O. Mongin and G. Queguiner, J. Org. Chem., 1994, 59, 6173.
´
10 K. Tamao, E. Nakajo and Y. Ito, Tetrahedron, 1988, 44, 3997.
11 G. Stork and P. F. Keitz, Tetrahedron Lett., 1989, 30, 6981.
12 V. Snieckus, Chem. Rev., 1990, 90, 879.
13 For seminal work on fluoride-free alkylsilane oxidations, see:
K. Tamao and N. Ishida, J. Organomet. Chem., 1984, 269, c37.
14 K. Tamao, T. Hayashi and Y. Ito, Frontiers of Organosilicon
Chemistry, The Royal Society of Chemistry, Cambridge, 1991.
15 M. M. Mader and P.-O. Norrby, J. Am. Chem. Soc., 2001, 123, 1970.
In conclusion, we have developed a phenolation strategy
which provides access to a variety of hydroxylated aromatics
from the corresponding aryl bromides, or directing group-
substituted species. The oxidation has been shown to be
ꢀc
This journal is The Royal Society of Chemistry 2010
3456 | Chem. Commun., 2010, 46, 3454–3456