Article
Inorganic Chemistry, Vol. 49, No. 12, 2010 5555
mentioning that the reaction of LGeCl with LiN(TMS)2 in
diethyl ether leads exclusively to L1Ge, [L1 = CH{(C=CH2)-
(CMe)(2,6-iPr2C6H3N)2}] instead of LGeN(TMS)2.9
Compound 1 was characterized by 1H NMR spectroscopy,
electron impact (EI) mass spectrometry, and elemental ana-
lysis. The 1H NMR spectrum of 1 shows a singlet at 4.82 ppm
for the γ-CH proton, and two septets (3.43, 3.37 ppm)
corresponding to the CH protons of the iPr moieties. More-
over the signal that arises at δ 2.82 ppm corresponds to
the protons of the NMe2 group. The most abundant ion in
the EI mass spectrum appeared at m/z 491 for [Mþ - NMe2].
1 crystallizes in the triclinic space group P1 with one mono-
mer in the asymmetric unit (Figure 1).
Similarly treatment of LPbCl with LiNMe2 in diethyl ether
afforded the lead(II) amide, LPbNMe2 (2), which was iso-
lated as a pale yellow, very air sensitive, microcrystalline solid
in moderate yield (Scheme 1). 2 was characterized by 1H, 13C,
and 207Pb NMR spectroscopy, EI mass spectrometry, and
Figure 1. Molecular structure of 1. Anisotropic displacement para-
meters are depicted at the 50% probability level, and all restrained refined
˚
hydrogen atoms are omitted for clarity. Selected bond lengths [A] and
1
elemental analysis. The H NMR spectrum of 2 shows a
angles [deg] are Ge1-N1 1.8712(14), Ge1-N2 2.0309(16); N1-Ge1-N2
99.84(7), N1-Ge1-N3 97.01(6).
singlet at 4.73 ppm for the γ-CH proton, and two septets
(δ 3.48, 3.30 ppm) corresponding to the CH protons of the iPr
moieties. Moreover the signal that arises at δ 3.80 ppm corres-
ponds to the protons of the NMe2 group. This resonance is
Scheme 1. Preparation of Compounds 1 and 2
(5) (a) Davidson, P. J.; Lappert, M. F. J. Chem. Soc., Chem.Commun.
1973, 317–322. (b) Davidson, P. J.; Harris, D. H.; Lappert, M. F. J. Chem. Soc.,
Dalton Trans. 1976, 2268–2274. (c) Chen, M.; Fulton, J. R.; Hitchcock, P. B.;
Johnstone, N. C.; Lappert., M. F.; Protchenko, A. V. Dalton. Trans. 2007, 2770–
2778. (d) Yao, S.; Block, S.; Brym, M.; Driess, M. Chem. Commun. 2007, 3844–
3846. (e) Jurkschat, K.; Peveling, K.; Sch€urmann, M. Eur. J. Inorg. Chem. 2003,
3563–3571. (f) Tam, E. C. Y.; Johnstone, N. C.; Ferro, L.; Hitchcock, P. B.; Fulton,
J. R. Inorg. Chem. 2009, 48, 8971–8976. (g) Charmant, J. P. H.; Haddow, M. F.;
€
Hahn, F. E.; Heitmann, D.; Frohlich, R.; Mansell, S. M.; Russsell, C. A.; Wass,
D. F. Dalton. Trans. 2008, 6055–6059. (h) Stanciu, C.; Hino, S. S.; Stender, M.;
Richards, A. F.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 2005, 44, 2774–
2780. (i) Filippou, A. C.; Weidemann, N.; Schnakenburg, G. Angew. Chem. 2008,
120, 5883–5886. Filippou, A. C.; Weidemann, N.; Schnakenburg, G. Angew.
Chem., Int. Ed. 2008, 47, 5799–5802. (j) Harris, D. H.; Lappert, M. F. J. Chem.
Soc., Chem.Commun. 1974, 895–896. (k) Fjeldberg, T.; Hope, H.; Lappert,
M. F.; Power, P. P.; Thorne, A. J. J. Chem. Soc., Chem.Commun. 1983, 639–641.
(l) Gynane, M. J. S.; Harris, D. H.; Lappert, M. F.; Power, P. P.; Rividre,
P.; Rividre-Baudet, M. J. Chem. Soc., Dalton Trans. 1977, 2004–2009.
(m) Lappert, M. F.; Power, P. P. J. Chem. Soc., Dalton Trans. 1985, 51–57.
(n) Wang, X.; Ni, C.; Zhu, Z.; Fettinger, J. C.; Power, P. P. Inorg. Chem. 2009, 48,
2464–2470. (o) Walding, J. L.; Fanwick, P. E.; Weinert, C. S. Inorg. Chim. Acta
2005, 358, 1186–1192. (p) Khrustalev, V. N.; Portnyagin, I. A.; Zemlyansky,
N. N.; Borisova, I. V.; Nechaev, M. S.; Ustynyuk, Y. A.; Antipin, M. Yu.; Lunin, V.
J. Organomet. Chem. 2005, 690, 1172–1177. (q) Veith, M.; Zimmer, M. Z.
Anorg. Allg. Chem. 1996, 622, 1471–1477. (r) Veith, M.; Rammo, A. Z. Anorg.
Allg. Chem. 2001, 627, 662–668.
(6) (a) Fischer, E.; Jourdan, F. Ber. 1883, 16, 2241–2245. (b) Fischer, E.;
Hess, O. Ber. 1884, 17, 559–568. (c) van Orden, R. B.; Lindwell, H. G. Chem.
Rev. 1942, 30, 69–96.
(7) (a) Howard, J. B.; Ress, D. C. Chem. Rev. 1996, 96, 2965–2982.
(b) Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983–3011. (b) Pool, J. A.;
Lobkovsky, E.; Chirik, P. J. Nature 2004, 427, 527–530. (c) Avenier, P.; Taoufik,
M.; Lesage, A.; Solans-Monfort, X.; Baudouin, A.; de Mallmann, A.; Veyre, L.;
Basset, J.-M.; Eisenstein, O.; Emsley, L.; Uqadrelli, E. A. Science 2007, 317,
1056–1060. (d) Chu, W.-C.; Wu, C.-C.; Hsu, H.-F. Inorg. Chem. 2006, 45, 3164–
3166 and references therein.
Table 1. 1H NMR Data of Terminal NMe2 Group in LMNMe2 (M = Ge, Sn,
and Pb)
compounda
1H NMR (δ, ppm)
LGeNMe2 (1)
LSnNMe2
LPbNMe2 (2)
2.82
3.00
3.80
10
a L = CH{(CMe)2(2,6-iPr2C6H3N)2}
shifted downfield compared to that of the analogous germa-
nium and tin compounds (see Table 1).
The 207Pb NMR of 2 exhibits a singlet at 1674 ppm; this
suggests that the NMe2 group is a stronger σ-acceptor, when
compared with that of chloride (207Pb NMR of LPbCl δ
1413 ppm). The most abundant ion in the EI mass spectrum
appeared at m/z 625 for the molecular ion [Mþ - NMe2]. 2
crystallizes in the monoclinic space group C2/m with one
monomer in the asymmetric unit (Figure 2).
We already reported on the synthesis and structure of
LGe(S)X (X = Cl, F, Me, and OH) with Group 14 and 16
elements.11 To the best of our knowledge there are no reports
on amide derivatives containing heavier elements of Group
14 and 16. Herein, we describe the formation of the germa-
nium thionamide LGe(S)NMe2 (3) (Scheme 2). The reaction
(8) (a) Alberas, D. J.; Kiss, J.; Liu, Z.-M.; White, J. M. Surf. Sci. 1992,
278, 51–61. (b) Lim, C.; Choi, C. H. J. Chem. Phys. 2004, 120, 979–987.
(c) Wiberg, N.; Veith, M. Chem. Ber. 1971, 104, 3176–3190. (d) Clegg, W.;
Haase, M.; Hluchy, H.; Klingebiel, U.; Sheldrick, G. M. Chem. Ber. 1983, 116,
290–298. (e) Drost, C.; Klingebiel, U. Chem. Ber. 1993, 126, 1413–1416.
(f) Gellermann, E.; Klingebiel, U.; Pape, T.; Dall'Antonia, F.; Schneider, T. R.;
Schmatz, S. Z. Anorg. Allg. Chem. 2001, 627, 2581–2588.
ꢀ
(11) (a) Ding, Y.; Ma, Q.; Uson, I.; Roesky, H. W.; Noltemeyer, M.;
€
(9) Driess, M.; Yao, S.; Brym, M.; Wullen, C. van Angew. Chem. 2006,
Schmidt, H.-G. J. Am. Chem. Soc. 2002, 124, 8542–8543. (b) Pineda, L. W.;
Jancik, V.; Roesky, H. W.; Herbst-Irmer, R. Angew. Chem. 2004, 116, 5650–
5652. Pineda, L. W.; Jancik, V.; Roesky, H. W.; Herbst-Irmer, R. Angew. Chem.,
Int. Ed. 2004, 43, 5534–5536.
118, 4455–4458. Driess, M.; Yao, S.; Brym, M.; W€ullen, C. van Angew. Chem.,
Int. Ed. 2006, 45, 4349–4352.
(10) Dove, P.; Gibson, V. C.; Marshall, E. D.; Rzepa, H. S.; White,
A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2006, 128, 9834–9843.