Gold(I) Complexes with Carbazole-Derived Ligands
[6]
[7]
J. C. Scott, L. T. Pautmeier, W. E. Moerner, J. Opt. Soc. Am. B
1992, 9, 2059–2064.
[AuCl(9-ethyl-3-isocyanocarbazole)] (11): Yield: 0.095 g (93%).
C15H12AuClN2 (452.69): calcd. C 39.80, H 2.67, N 6.19; found C
39.94, H 2.48, N 6.05. 1H NMR (300.13 MHz, CDCl3): δ = 8.26
a) Y. Zhang, Y. Cui, P. N. Prasad, Phys. Rev. B 1992, 46, 9900–
9902; b) B. Kippelen, K. Tamura, N. Peyghambarian, Phys.
Rev. B 1993, 48, 10710–10717; c) Y. Zhang, T. Wada, L. Wang,
T. Aoyama, H. Sasabe, Chem. Commun. 1996, 2325–2326; d)
Y. Zhang, T. Wada, L. Wang, H. Sasabe, Chem. Mater. 1997,
9, 2798–2804; e) Y. Zhang, T. Wada, H. Sasabe, J. Mater.
Chem. 1998, 8, 809–828.
4
3
(d, JH,H = 1.9 Hz, 1 H, H4), 8.10 (d, JH,H = 8.8 Hz, 1 H, H1),
7.59 (m, 2 H), 7.49 (d, 3JH,H = 8.4 Hz, 1 H), 7.46 (d, 3JH,H = 8.5 Hz,
3
1 H), 7.36 (m, 1 H), 4.42 (q, JH,H = 7.2 Hz, 2 H, CH2), 1.47 (t,
3JH,H = 7.2 Hz, 3 H, CH ) ppm. IR (nujol): ν = 2222 [ν(CϵN)]
˜
3
cm–1.
[8]
[9]
W. Y. Wong, Coord. Chem. Rev. 2005, 249, 971–997.
H. M. J. Wang, C. S. Vasam, T. Y. R. Tsai, S.-H. Chen,
A. H. H. Chang, I. J. B. Lin, Organometallics 2005, 24, 486–
493.
[Au(C6F5)(9-ethyl-3-isocyanocarbazole)] (12): Yield: 0.173 g (65%).
C21H12AuF5N2 (584.30): calcd. C 43.17, H 2.07, N 4.79; found C
42.95, H 2.03, N 4.63. 1H NMR (300.13 MHz, CDCl3): δ = 8.28
4
3
(d, JH,H = 1.9 Hz, 1 H), 8.11 (d, JH,H = 8.8 Hz, 1 H), 7.60 (m, 2
[10]
a) W. Y. Wong, G. L. Lu, K. H. Choi, J. X. Shi, Macromole-
cules 2002, 35, 3506–3513; b) C. H. Tao, K. M. C. Wong, N.
Z h u , V. W. W. Ya m , New J. Chem. 2003, 27, 150–154; c) C. L.
Ho, W. Y. Wong, J. Organomet. Chem. 2006, 691, 395–402; d)
L. Liu, W. Y. Wong, J. H. Shi, K. W. Cheah, T. H. Lee, L. M.
Leung, J. Organomet. Chem. 2006, 691, 4028–4041; e) L. Liu,
W. Y. Wong, J. X. Shi, K. W. Cheah, J. Polym. Science Part A
2006, 44, 5588–5607; f) W. Y. Wong, S. Y. Poon, J. X. Shi, K. W.
Cheah, J. Inorg. Organomet. Polym. Mater. J. Inorg. Organomet.
Polym. Mater. 2007, 17, 189–200; g) J. B. Seneclauze, P. Re-
tailleau, R. Ziessel, New J. Chem. 2007, 31, 1412–1416.
J. Y. Wu, Y. L. Pan, X. J. Zhang, T. Sun, Y. P. Tian, J. X. Yang,
Z. N. Chen, Inorg. Chim. Acta 2007, 360, 2083–2091.
a) A. C. Ribou, T. Wada, H. Sasabe, Inorg. Chim. Acta 1999,
288, 134–141; b) K. R. J. Thomas, J. T. Lin, Y. Y. Lin, C. Tsai,
S. S. Sun, Organometallics 2001, 20, 2269–2269; c) H. P. Zhou,
Y. P. Tian, J. Y. Wu, J. Z. Zhang, D. M. Li, Y. M. Zhu, Z. J.
Hu, X. T. Tao, M. H. Jiang, Y. Xie, Eur. J. Inorg. Chem. 2005,
4976–4984.
3
H), 7.48 (m, 2 H), 7.35 (m, 1 H), 4.42 (q, JH,H = 7.2 Hz, 2 H,
3
CH2), 1.48 (t, JH,H = 7.2 Hz, 3 H, CH3) ppm. 19F NMR
3
(282.4 MHz, CDCl3): δ = –116.4 (m, 2 F, Fo), –158.1 (t, JF,F
=
20.2 Hz, 1 F, Fp), –162.7 (m, 2 F, Fm) ppm. IR (nujol): ν = 2213
˜
[ν(CϵN)] cm–1.
X-ray Structures: Crystal structure refinement data for 10a and 12
are given in Table 2. Data were recorded with a Bruker AXS
SMART 1000 CCD diffractometer, using φ and ω scans, Mo-Kα
radiation (λ = 0.71073 Å), graphite monochromator, and T =
298 K. Raw frame data were integrated with SAINT[40] program.
Structures were solved by direct methods with SHELXTL.[41] Semi-
empirical absorption correction was made with SADABS.[42] All
non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were set in calculated positions and refined as riding atoms, with a
common thermal parameter. All calculations were made with
SHELXTL.
[11]
[12]
[13]
a) C. Yang, X. Zhang, H. You, L. Zhu, L. Chen, L. Zhu, Y.
Tao, D. Ma, Z. Shuai, J. Qin, Adv. Funct. Mater. 2007, 17, 651–
661; b) C. L. Ho, W. Y. Wong, Z. Q. Gao, C. H. Chen, K. W.
Cheah, B. Yao, Z. Y. Xie, Q. Wang, D. G. Ma, L. Wang, X. M.
Yu, H. S. Kwok, Z. Y. Lin, Adv. Funct. Mater. 2008, 18, 319–
331; c) W. Y. Wong, C. L. Ho, Z. Q. Gao, B. X. Mi, C. H. Chen,
K. W. Cheah, Z. Lin, Angew. Chem. Int. Ed. 2006, 45, 7800–
7803; d) K. Ono, M. Joho, K. Saito, M. Tomura, Y. Matsush-
ita, S. Naka, H. Okada, H. Onnagawa, Eur. J. Inorg. Chem.
2006, 3676–3683; e) S. Bettington, M. Tavasli, M. R. Bryce, A.
Beeby, H. Al-Attar, A. P. Monkman, Chem. Eur. J. 2007, 13,
1423–1431; f) S. C. Lo, E. B. Namdas, C. P. Shipley, J. P. J.
Markham, T. D. Anthopopous, P. L. Burn, I. D. W. Samuel,
Org. Electronics 2006, 7, 85–98.
CCDC-709208 (for 10a) and -709209 (for 12) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Emission spectra of 5a, 8a, 9a, 10a, 9b, 10b, 7, 11, and 12.
Acknowledgments
We thank Dr. Julio Gómez for some spectral measurements. The
Spanish Comisión Interministerial de Ciencia y Tecnología [INTE-
CAT Consolider Ingenio 2010 (CSP2006-0003) and Project
CTQ2008-03954] and the Junta de Castilla y León (Project
VA012A08 and GR169) are thanked for financial support.
[14]
[15]
P. N. M. Botman, J. Fraanje, K. Goubitz, R. Peschar, J. W. Ver-
hoeven, J. H. Van Maarseveen, H. Hiemstra, Adv. Synth. Catal.
2004, 346, 743–754.
a) Z. Liu, M. G. Guam, D. Nie, Z. Gong, Z. Li, C. Huang,
Adv. Funct. Mater. 2006, 16, 1441–1448; b) B. L. Li, L. Wu,
Y. M. He, Q. H. Fan, Dalton Trans. 2007, 2048–2057; c) Z. Liu,
Z. Bian, L. Ming, F. Ding, H. Shen, D. Nie, C. Huang, Org.
Electronics 2008, 9, 171–182; d) L. Yang, X. H. Zhao, H. P.
Zhou, J. Y. Wu, J. X. Yang, G. Q. Shao, Y. P. Tian, Transition
Met. Chem. 2008, 33, 431–437; e) Z. Liu, D. Nie, Z. Bian, F.
Chen, B. Lou, J. Bian, C. Huang, ChemPhysChem 2008, 9,
634–640.
a) S. H. Hwang, P. Wang, C. N. Moorefield, L. A. Godínez, J.
Manríquez, E. Bustos, G. Newkome, Chem. Commun. 2005,
4672–4674; b) X. Chen, Q. Zhou, Y. Cheng, Y. Geng, D. Ma,
Z. Xie, L. Wang, J. Lumin. 2007, 126, 81–90.
a) N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Cam-
pagna, B. Verheyde, A. Hameurlaine, W. Dehae, J. Am. Chem.
Soc. 2003, 125, 5356–5365; b) F. Liu, K. Wang, G. Bai, Y.
Zhang, L. Gao, Inorg. Chem. 2004, 43, 1799–1806; c) X. Li, J.
Gui, H. Yang, W. Wu, F. Li, H. Tian, C. Huang, Inorg. Chim.
Acta 2008, 361, 2835–2840.
[1] a) H. Hoegl, O. Süs, W. Neugebauer, German Patent, 1068115,
1961; [Chem. Abstr. 1961, 55, 20742a]; b) H. Hoegl, J. Phys.
Chem. 1965, 69, 755–766.
[2] J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, K. Pielichow-
ski, Prog. Polym. Sci. 2003, 28, 1297–1353.
[3] a) S. Maruyama, X.-T. Tao, H. Hokari, T. Hoh, Y. Zhang, T.
Wada, H. Sasabe, T. Watanabe, S. Miyata, J. Mater. Chem.
1999, 9, 893–898; b) Z. Zhu, J. S. Moore, J. Org. Chem. 2000,
65, 116–123; c) K. R. J. Thomas, J.-Y.-Y. Lin, C. Tsai, S. S. Sun,
Organometallics 2001, 20, 2262–2269.
[4] a) M. Lux, P. Strohriegl, H. Höcker, Makromol. Chem. 1987,
188, 811–820; b) B. Gallot, A. Cravino, I. Moggio, D. Comor-
etto, C. Cuniberti, C. DellЈerba, G. Dellepiane, Liq. Cryst.
1999, 26, 1437–1444; c) B. Marcher, L. Chapoy, D. H. Chris-
tensen, Macromolecules 1988, 21, 677–686; d) M. Manickam,
M. Belloni, S. Kumar, S. K. Varsheney, D. S. S. Rao, P. R. Ash-
ton, J. A. Preece, N. Spencer, J. Mater. Chem. 2001, 11, 2790–
2800.
[16]
[17]
[18]
[5] Y. Zhang, L. Wang, T. Wada, H. Sasabe, Chem. Commun. 1996,
a) W. S. Huang, J. T. Lin, C. H. Chien, Y. T. Tao, S. S. Sun,
Y. S. Wen, Chem. Mater. 2004, 16, 2480–2488; b) Z. Si, J. Li,
559–561.
Eur. J. Inorg. Chem. 2009, 5399–5406
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5405