Fig. 3 STM current images of m-acid showing rectangular network type organization: (A) scan size: 45 ꢁ 45 nm2; Vbias = ꢄ663 mV; It = 672 pA;
(B) scan size: 13 ꢁ 13 nm2; Vbias = ꢄ730 mV; It = 544 pA. (C) Schematic representation of the 2D molecular arrangement for m-acid into a
rectangular network.
rectangular network having periodic cavities. Multiple hydrogen
bonding can occur at the corners of the rectangle in several
ways and a possible arrangement is presented in Fig. 3C. It is
interesting to note that the alkyl chains do not play a
significant role in the organization of m-acid as in the case of
OPE and p-acid. The crystal structure of m-acid can provide
more information on the 3D organizations, however our
attempt to crystallize the molecule was not successful. The
rectangular porous network on the surface is regular and the
cavities having dimensions of B(2.3 ꢁ 2.5) nm2 are an
excellent template for host molecules such as fullerenes.
In summary, we have demonstrated that the position of
carboxylic acid plays a crucial role in the self-organization of
phenyleneethynylenes on a surface. Two point hydrogen bonding
interactions between the carboxylic acid groups lead to a linear
wire type arrangement for p-acids and a periodic rectangular
network having cavity dimensions of B(2.3 ꢁ 2.5) nm2 for
m-acids. Multiple hydrogen bonding between the terminal
carboxylic acid units at the meta position holds phenylene-
ethynylenes as a rectangular network having periodic cavities.
Thus, the organization of the phenyleneethynylene building
block is greatly influenced by the position of the functional
group and an understanding of the optical and electronic
properties of these assemblies is essential for designing next
generation molecular devices.
4 N. Lin, A. Langner, S. L. Tait, C. Rajadurai, M. Ruben and
K. Kern, Chem. Commun., 2007, 4860–4862; K. H. Ernst,
Top. Curr. Chem., 2006, 265, 209; M. In’t Veld, P. Iavicoli,
S. Haq, D. B. Amabilino and R. Raval, Chem. Commun., 2008,
1536; K. Tahara, S. Lei, D. Mossinger, H. Kozuma, K. Inukai,
M. Van Der Auweraer, F. C. De Schryver, S. Hoger, Y. Tobe and
S. De Feyter, Chem. Commun., 2008, 3897.
5 H. Li, D. R. Powell, R. K. Hayashi and R. West, Macromolecules,
1998, 31, 52.
6 P. V. James, P. K. Sudeep, C. H. Suresh and K. G. Thomas,
J. Phys. Chem. A, 2006, 110, 4329.
7 C. A. Breen, S. Rifai, V. Bulovic and T. M. Swager, Nano Lett.,
2005, 5, 1597.
8 Z. Mu, L. Shu, H. Fuchs, M. Mayor and L. Chi, J. Am. Chem.
Soc., 2008, 130, 10840; S. Weigelt, C. Busse, C. Bombis,
M. M. Knudsen, K. V. Gothelf, E. Loegsgaard, F. Besenbacher
and T. R. Linderoth, Angew. Chem., Int. Ed., 2008, 47, 4406;
S. Weigelt, C. Busse, L. Petersen, E. Rauls, B. Hammer,
K. V. Gothelf, F. Besenbacher and T. R. Linderoth, Nat. Mater.,
2006, 5, 112; P. Samori, K. Mullen and J. P. Rabe, Adv. Mater.,
2004, 16, 1761.
9 A. Llanes-Pallas, C.-A. Palma, L. Piot, A. Belbakra, A. Listorti,
M. Prato, P. Samori, N. Armaroli and D. Bonifazi, J. Am. Chem.
Soc., 2009, 131, 509.
10 K. Yoosaf, A. R. Ramesh, J. George, C. H. Suresh and
K. G. Thomas, J. Phys. Chem. C, 2009, 113, 11836; K. Yoosaf,
P. V. James, A. R. Ramesh, C. H. Suresh and K. G. Thomas,
J. Phys. Chem. C, 2007, 111, 14933.
11 P. Samori, V. Francke, V. Enkelmann, K. Mullen and J. P. Rabe,
Chem. Mater., 2003, 15, 1032; M. Matena, A. Llanes-Pallas,
M. Enache, T. Jung, J. Wouters, B. Champagne, M. Stohr and
D. Bonifazi, Chem. Commun., 2009, 3525; Y. Kikkawa,
E. Koyama, S. Tsuzuki, K. Fujiwara, K. Miyake, H. Tokuhisa
and M. Kanesato, Chem. Commun., 2007, 1343; Z. Mu, X. Yang,
Z. Wang, X. Zhang, J. Zhao and Z. Bo, Langmuir, 2004, 20, 8892.
12 A. Langner, S. L. Tait, N. Lin, C. Rajadurai, M. Ruben and
K. Kern, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 17927;
M. O. Blunt, J. C. Russell, M. D. C. Gimenez-Lopez,
J. P. Garrahan, X. Lin, M. Schroder, N. R. Champness and
P. H. Beton, Science, 2008, 322, 1077; Q. Chen, T. Chen,
X. Zhang, L. J. Wan, H. B. Liu, Y. L. Li and P. Stang,
Chem. Commun., 2009, 3765.
13 H. Zhou, H. Dang, J.-H. Yi, A. Nanci, A. Rochefort and
J. D. Wuest, J. Am. Chem. Soc., 2007, 129, 13774; M. Lackinger
and W. M. Heckl, Langmuir, 2009, 25, 11307; R. Gutzler,
S. Lappe, K. Mahata, M. Schmittel, W. M. Heckl and
M. Lackinger, Chem. Commun., 2009, 680; J.-R. Gong,
H.-J. Yan, Q.-H. Yuan, L.-P. Xu, Z.-S. Bo and L.-J. Wan,
J. Am. Chem. Soc., 2006, 128, 12384.
We acknowledge financial support from CSIR (NWP-23)
and the Indo-Italian Program of DST, Government of India.
SAIF, IITM, Chennai is gratefully acknowledged for single
crystal analysis. This is contribution PPG-295 from NIIST.
Notes and references
1 J. M. Lehn, Science, 2002, 295, 2400.
2 J. V. Barth, G. Costantini and K. Kern, Nature, 2005, 437, 671.
3 W. Xu, M. Dong, H. Gersen, E. Rauls, S. Vazquez-Campos,
M. Crego-Calama, D. N. Reinhoudt, E. Loegsgaard, I. Stensgaard,
T. R. Linderoth and F. Besenbacher, Small, 2008, 4, 1620; S. De
Feyter, A. Miura, S. Yao, Z. Chen, F. Wurthner, P. Jonkheijm, A. P.
H. J. Schenning, E. W. Meijer and F. C. De Schryver, Nano Lett.,
2005, 5, 77; X. Ma, Y. Yang, K. Deng, Q. Zeng, K. Zhao, C. Wang
and C. Bai, J. Mater. Chem., 2008, 18, 2074; C. Bai, IEEE INEC 2010,
Hong Kong, January 2010; K. E. Plass, A. L. Grzesiak and
A. J. Matzger, Acc. Chem. Res., 2007, 40, 287.
14 I. Hisaki, Y. Sakamoto, H. Shigemitsu, N. Tohnai, M. Miyata,
S. Seki, A. Saeki and S. Tagawa, Chem.–Eur. J., 2008, 14, 4178.
ꢃc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3457–3459 | 3459