July 2013
Synthesis and Biological Evaluation of Novel Benzoxaboroles as
Potential Antimicrobial and Anticancer Agents
819
acetate, 3:1) to obtain 0.25 g (58%) of benzoboroxole 7a as a
white powder. mp: 91–93ꢀC, (Found: C, 60.62%; H, 5.25%;
C12H13BO4 requires: C, 60.60%; H, 5.09%); 1H NMR
(400MHz, CDCl3): d 9.45 (s, 1H), 7.70–7.72 (m, 1H), 7.40–7.44
(m, 1H), 7.25–7.35 (m, 2H), 6.16 (s, 1H), 5.93 (s, 1H), 5.79–5.80
(m, 1H), 3.67 (s, 3H); 13C NMR (100 MHz, CDCl3): d 166.2,
155.5, 140.6, 131.5, 131.2, 128.1, 126.6, 122.3, 79.3, 52.5;
ESI-MS: 217 [(MÀ H)+, 100%].
Acknowledgments. We thank the Department of Chemistry and
Biochemistry, University of Minnesota Duluth and Rowan
University for the funding. Partial support for this work was
also provided by research grants from the University of
Minnesota Academic Health Center Faculty Development Grant
(VRM), Whiteside Institute for Clinical Research (VRM), and
Rowan University Non-Salary Financial Support Grants
(NSFSG) (SCJ). We thank Dr Victor G. Young, Jr. (University
of Minnesota X-ray Crystallographic Laboratory) for providing
the crystal structure.
Representative procedure for the preparation of
benzoboroxoles via Barbier allylation 10a.
To a stirred
suspension of 2-boronobenzaldehyde 6a (0.3 g, 2.0 mmol) and
zinc (0.19 g, 3.0 mmol) in 4.0 mL THF was added methyl
a-bromomethylacrylate 9a (0.72 g, 4.0 mmol) and saturated
NH4Cl (1mL) and stirred overnight at room temperature. Upon
completion (TLC), the reaction mixture was filtered over celite
and worked up with water and ethyl acetate (3Â 10 mL). The
combined organic layers were dried (MgSO4), concentrated in
vacuo, and purified via silica gel column chromatography (hexane
: ethyl acetate, 3:1) to obtain 0.35g (75%) of benzoboroxole 10a
as a viscous liquid. (Found: C, 62.01%; H, 5.52%; C12H13BO4
REFERENCES AND NOTES
[1] (a) Burroughs, S.; Wang, B. Chem Bio Chem 2010, 11, 2245; (b)
Trippier, P. C.; McGuigan, C. Med Chem Comm 2010, 1, 183; (c) Yang, W.;
Gao, X.; Wang, B. Med Res Rev 2003, 23, 346; (d) Dembitsky, V. M.;
Srebnik, M. Tetrahedron 2003, 59, 579; (e) Coutts, S. J.; Kelly, T. A.;
Snow, R. J.; Kennedy, C. A.; Barton, R. W.; Adams, J.; Krolikowski,
D. A.; Freeman, D. M.; Campbell, S. J.; Ksiazek, J. F.; Bachovchin,
W. W. J Med Chem 1996, 39, 2087; (f) Kinder, D. H.; Frank, S. K.;
Ames, M. M. J Med Chem 1990, 33, 819; (g) Kettner, C. A.; Shenvi,
A. B. J Biol Chem 1984, 259, 15106.
[2] (a) Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes,
R.; Solomon, M. E.; Ramanjulu, J. M.; Boody, C. N. C.; Takayanagi,
M. Angew Chem Int Ed 1998, 37, 2708; (b) Nicolaou, K. C.; Li, H.;
Boody, C. N. C.; Ramanjulu, J. M.; Yue, T. Y.; Natarajan, S.; Chu, X.
J.; Brase, S.; Rubsam, F. Chem Eur 1999, 5, 2584; (c) Tan, Y. L.; White,
A. J. P.; Widdowson, D. A.; Wilhelm, R.; Williams, D. J. J Chem Soc
Perkin Trans 2001, 1, 3269; (d) Wozniack, A. A.; Cyranski, M. K.;
Zubrowska, A.; Sporzynski, A. J Organomet Chem 2009, 694, 3533 and
references therein; (e) Ye, L.; Ding, D.; Feng, Y.; Xie, D.; Wu, P.; Guo,
H.; Meng, Q.; Zhou, H. Tetrahedron 2009, 65, 8738; (f) Ma, X.; Yang, Z.;
Wang, X.; Roesky, H. W.; Wu, F.; Zhu, H. Inorg Chem 2011, 50, 2010.
[3] (a) Oshima, K.; Aoyama, Y. J Am Chem Soc 1999, 121, 2315;
(b) Dowlut, M.; Hall, D. G. J Am Chem Soc 2006, 128, 4226; (c) Pal, A.;
Berube, M.; Hall, D. G. Angew Chem Int Ed Engl 2010, 49, 1492; (d)
Schumacher, S.; Katterle, M.; Hettrich, C.; Paulke, B-R.; Hall, D.
G.; Scheller, F. W.; Gajovic-Eichelmann, N. J. Mol. Recognition 2011,
24, 953; (e) Schumacher, S.; Grueneberger, F.; Katterle, M.; Hettrich,
C.; Hall, D. G.; Scheller, F. W.; Gajovic-Eichelmann, N. Polymer 2011,
52, 2485.
[4] (a) AN2690, AN2718, & AN2728 are being currently developed
as therapeutic agents by Anacor Pharmaceuticals Inc. Palo Alto: CA,
USA; (b) Li, X.; Plattner, J. J.; Hernandez, V.; Ding, C. Z.; Wu, W.; Yang,
Y.; Xu, M. Tetrahedron Lett 2011, 52, 4924; (c) Xia, Y.; Cao, K.; Zhou,
Y.; Alley, M. R. K.; Rock, F.; Mohan, M.; Meewan, M.; Baker, S. J.; Lux,
S.; Ding, C. Z.; Jia, G.; Kully, M.; Plattner, J. J. Bioorg Med Chem Lett
2011, 21, 2533; (d) Li, X.; Zhang, S.; Zhang, Y-K.; Liu, Y.; Ding, C. Z.;
Zhou, Y.; Plattner, J. J.; Baker, S. J.; Bu, W.; Liu, L.; Kazmierski, W. M.;
Duan, M.; Grimes, R. M.; Wright, L. L.; Smith, G. K.; Jarvest, R. L.; Ji, J-
J.; Cooper, J. P.; Tallant, M. D.; Crosby, R. M.; Creech, K.; Ni, Z-J.; Zou,
W.; Wright, J. Bioorg Med Chem Lett 2011, 21, 2048; (e) Zhang, Y-K.;
Plattner, J. J.; Freund, Y. R.; Easom, E. E.; Zhou, Y.; Gut, J.; Rosenthal,
P. J.; Waterson, D.; Gamo, F-J.; Angulo-Barturen, I.; Ge, M.; Li, Z.; Li,
L.; Jian, Y.; Cui, H.; Wang, H.; Yang, J. Bioorg Med Chem Lett 2011,
21, 644; (f) Jacobs, R. T.; Plattner, J. J.; Nare, B.; Wring, S. A.; Chen,
D.; Freund, Y.; Gaukel, E. G.; Orr, M. D.; Perales, J. B.; Jenks,
M.; Noe, R. A.; Sligar, J. M.; Zhang, Y.-K.; Bacchi, C. J.; Yarlett,
N.; Don, R. Future Med. Chem. 2011, 3, 1259; (g) Ding, D.; Meng,
Q.; Gao, G.; Zhao, Y.; Wang, Q.; Nare, B.; Jacobs, R.; Rock, F.; Alley,
M. R. K.; Plattner, J. J.; Chen, G.; Li, D.; Zhou, H. J. Med Chem 2011,
54, 1276; (h) Li, X.; Zhang, Y-K.; Liu, Y.; Zhang, S.; Ding, C. Z.; Zhou,
Y.; Plattner, J. J.; Baker, S. J.; Liu, L.; Bu, W.; Kazmierski, W. M.;
Wright, L. L.; Smith, G. K.; Jarvest, R. L.; Duan, M.; Ji, J-J.; Cooper,
J. P.; Tallant, M. D.; Crosby, R. M.; Creech, K.; Ni, Z-J.; Zou, W.;
Wright, J. Bioorg Med Chem Lett 2010, 20, 7493; (i) Ding, C. Z.;
Zhang, Y-K.; Li, X.; Liu, Y.; Zhang, S.; Zhou, Y.; Plattner, J. J.; Baker,
S. J.; Liu, L.; Duan, M.; Jarvest, R. L.; Ji, J.; Kazmierski, W. M.; Tallant,
1
requires: C, 62.11%; H, 5.65%); H NMR (400 MHz, CDCl3): d
9.24 (s, 1H), 7.67 (d, J= 7.2 Hz, 1H), 7.41–7.45 (m, 1H), 7.29–7.36
(m, 2H), 6.12 (d, J= 1.2 Hz, 1H), 5.69 (d, J= 1.2 Hz, 1H), 5.26 (dd,
J= 4.0, 8.4 Hz, 1H), 3.64 (s, 3H), 2.89 (dd, J= 8.4, 14.4 Hz, 1H),
2.39 (dd, J= 8.4, 14.8 Hz, 1H); 13C NMR (100 MHz, CDCl3): d
167.6, 156.8, 136.9, 131.2, 131.1, 128.2, 127.9, 122.2, 79.1, 52.5,
39.2; ESI-MS: 231 (M À H)+, 189 (100%).
Representative procedure for the preparation of
benzoboroxoles via Passerini reaction 15c.
To a stirred
solution of boronoaldehyde 6a (0.3 g, 2.0 mmol) in 2 mL DMF
was added tert-butyl isonitrile 14c (0.23 mL, 2.0 mmol) and
stirred overnight at room temperature. Upon completion (TLC),
the reaction mixture was worked up with water and ethyl
acetate (3 Â 25 mL). The combined organic layers were dried
(MgSO4), concentrated in vacuo, and purified via silica gel
column chromatography (hexane : ethyl acetate, 3:1) to
obtain 0.30 g (65%) of benzoxaborole 15c. (Found: C, 61.53;
H, 8.10; N, 6.02 %; C12H16BNO3 requires: C, 61.84; H,
6.92; N, 6.01%); 1H NMR (500 MHz, DMSO-d6): 9.33
(bs, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H),
7.36 (t, J = 7.4 Hz, 1H), 7.26 (t, J = 7.4 Hz, 1H), 6.52 (s, 1H),
5.27 (s, 1H), 1.21 (s, 9H); 13C NMR (125 MHz, CDCl3):
169.4, 152.3, 131.3, 130.8, 128.1, 122.9, 80.2, 51.1, 28.9;
ESI-MS: 232 [(M À H)+, 100%].
Representative procedure for the preparation of
benzoboroxoles via aldol reaction 17a. To a stirred solution
of acetophenone 16a (10 mmol) in 20 mL THF was added LDA
(12 mmol) at À78ꢀC and stirred for 1 h. A solution of 2-
boronobenzaldehyde 6a (9 mmol) in 5 mL THF was added to
the reaction at À78ꢀC and stirred overnight at room
temperature. Upon completion (TLC), the reaction was
quenched with NH4Cl and worked up with ethyl acetate. The
combined organic layers were dried (MgSO4), concentrated in
vacuo, and purified by silica gel column chromatography to
obtain the pure benzoxaborole 17a in 60% yield. 1H NMR
(500 MHz, DMSO-d6): d 9.21 (s, 1H), 8.03 (d, J = 8.0 Hz, 2H),
7.74 (d, J = 7.5 Hz, 1H), 7.65–7.68 (m, 1H), 7.48–7.57 (m, 4H),
7.37–7.40 (m, 1H), 5.71 (dd, J = 4.0, 8.8 Hz, 1H), 3.58 (dd,
J = 3.5 Hz, 17.5 Hz, 1H), 3.34 (dd, J = 8.5 Hz, 17.0 Hz, 1H); 13C
NMR (125 MHz, CDCl3): 198.6, 157.5, 137.7, 134.3, 131.6,
131.4, 129.7, 129.2, 128.2, 122.5, 77.7, 46.3; ESI-MS: 251
[(M À H)+, 100%].
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet