Ambident Reactivity of Bis(Diisopropylamino)carbene
cedures. The NMR spectra were recorded with Varian Gemini
400 MHz and JEOL FX-90Q spectrometers. The 1H and 13C chem-
ical shifts are referenced to tetramethylsilane (TMS), and the 19F
shifts are referenced to CFCl3. The 31P chemical shifts were mea-
sured by using 85% aqueous H3PO4 as an external standard.
Acknowledgments
The authors thank Prof. A. Chernega and Dr. E. Rusanov (Insti-
tute of Organic Chemistry, Kiev, Ukraine) for the X-ray diffraction
studies, as well as Prof. A. Rozhenko, (Institute of Organic Chemis-
try, Kiev, Ukraine) for fruitful discussions.
Compound 5: To a frozen (–196 °C) solution of 2 (84 mg, 0.4 mmol)
in Et2O (1 mL) was dropwise added a chilled solution of N-(per-
fluoroprop-2-ylidene)benzamide (1; 52 mg, 0.19 mmol) in Et2O
(0.4 mL) so that the mixture remained solid. The mixture was
warmed to room temperature over 20 min whilst stirring. After
evaporation of ether in vacuo, the residue was extracted with hex-
ane (1 mL) at 20 °C with stirring. The hexane solution was sepa-
rated and stored overnight at –15 °C. After separation of the pre-
cipitate, the mother liquor was concentrated and purified by col-
umn chromatography (Rf = 0.6, silica gel 60, hexane/diethyl ether,
10:1). Colorless crystals of 5 suitable for X-ray analysis were grown
from hexane at 20 °C. Yield after recrystallization: 6 mg (7.5%).
[1] D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem.
Rev. 2000, 100, 39–91.
[2] J. Vignolle, X. Cattoën, D. Bourissou, Chem. Rev. 2009, 109,
3333–3384.
[3] a) M. R. Hoffmann, K. Kuhler, J. Chem. Phys. 1991, 94, 8029;
b) M. T. Nguyen, M. A. McGinn, A. F. Hegarty, Inorg. Chem.
1986, 25, 2185–2190; c) L. Nuylászi, T. Sziebert, J. Reffy, T. J.
Veszpremi, THEOCHEM 1998, 453, 91–95; d) B. Lecea, M.
Ayerbe, A. Arrieta, F. P. Cossio, V. Branchadell, R. M. Ortunˇo,
A. Baceiredo, J. Org. Chem. 2007, 72, 357–366.
M.p. 116–117 °C. 1H NMR (CDCl3): δ = 0.88 (d, 3JH,H = 6.84 Hz, [4] T. Kato, H. Gornitzka, A. Baceiredo, A. Savin, G. Bertrand,
3
J. Am. Chem. Soc. 2000, 122, 998–999.
3 H, iPr), 1.10–1.21 (m, 15 H, iPr), 3.34 (sept., JH,H = 6.84 Hz, 1
3
3
[5] J. Kapp, C. Schade, A. M. El-Nahasa, P. v. R. Schleyer, Angew.
Chem. 1996, 108, 2373–2376; Angew. Chem. Int. Ed. Engl. 1996,
35, 2236–2238.
H, iPr), 3.44 (sept., JH,H = 6.84 Hz, 1 H, iPr), 3.65 (sept., JH,H
=
6.84 Hz, 1 H, iPr), 5.23 (s, 1 H, CH), 7.41–7.51 (m, 5 H, Ar) ppm.
13C NMR (CDCl3): δ = 21.26 (s, 1 C, iPr), 22.74 (s, 1 C, iPr), 23.26
(s, 1 C, iPr), 23.67 (s, 1 C, iPr), 23.73 (s, 1 C, iPr), 24.44 (s, 1 C,
iPr), 30.13 (s, 1 C, N-C-N), 44.55 (s, 1 C, iPr), 47.53 (s, 1 C, iPr),
[6] G. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2004, 33, 210–217.
[7] W. Kirmse, Angew. Chem. 2004, 116, 1799–1801; Angew. Chem.
Int. Ed. 2004, 43, 1767–1769.
[8] R. Alder, P. Allen, M. Murray, G. Orpan, Angew. Chem. Int.
Ed. Engl. 1996, 35, 1121–1123.
[9] D. Poliakov, I. Shevchenko, Eur. J. Org. Chem. 2008, 34, 5805–
5809.
[10] N. I. Korotkikh, A. H. Cowley, J. A. Moore, N. V. Glinyanaya,
I. S. Panov, G. F. Rayenko, T. M. Pekhtereva, O. P. Shvaika,
Org. Biomol. Chem. 2008, 6, 195–199.
47.77 (s, 1 C, iPr), 78.03 (br., 1 C, CF3-C-CF3), 122.99 (q, JC,F
=
283.81 Hz, 1 C, CF3), 124.44 (q, JC,F = 282.28 Hz, 1 C, CF3),
128.18 (s, 1 C, Ar), 128.62 (s, 1 C, Ar), 130.05 (s, 1 C, Ar), 133.28
(s, 1 C, Ar), 171.35 (s, 1 C, C=N) ppm. 19F NMR (CDCl3): δ =
4
4
–74.94 (q, JF,F = 10.38 Hz, 3 F, CF3), –67.71 (q, JF,F = 10.38 Hz,
3 F, CF3) ppm.
Crystal Data for 5: Data were collected with a Bruker Smart Apex
II Enraf–Nonius CAD4 diffractometer. C20H27F6N3, M = 423.45,
monoclinic, a = 9.4370(2) Å, b = 16.3176(5) Å, c = 13.8192(3) Å,
β = 95.267(2)°, V = 2119.02(9) Å3, T = 273(2) K, space group P21/
n, Z = 4, µ(Mo-Kα) = 0.116 mm–1, λ = 0.71073 Å, 13679 reflections
measured, 5199 unique (Rint = 0.0011). Final R indices R1 = 0.0475,
wR(F2) = 0.1092 [for 3161 reflections with I/σ(I) Ͼ 2.0]. CCDC-
637870 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[11] K. Burger, A. Fuchs in Nitrogen, Oxygen and Sulfur Ylide
Chemistry: A Practical Approach in Chemistry (Ed.: J. S.
Clark), Oxford University Press, Oxford, 2002, p. 286–292.
[12] I. V. Komarov, Russ. Chem. Rev. 2001, 70, 991–1016.
[13] V. Lavallo, J. Mafhouz, Y. Canac, B. Donnadieu, W. Schoeller,
G. Bertrand, J. Am. Chem. Soc. 2004, 126, 8670–8671.
[14] Y. Canac, S. Conejero, B. Donnadieu, W. Schoeller, G. Ber-
trand, J. Am. Chem. Soc. 2005, 127, 7312–7313.
[15] N. Merceron, K. Miqueu, A. Baceiredo, G. Bertrand, J. Am.
Chem. Soc. 2002, 124, 6806–6807.
Received: January 20, 2010
Published Online: March 19, 2010
Eur. J. Org. Chem. 2010, 2449–2451
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2451