Irene Suarez del Villar et al. / Tetrahedron Letters 51 (2010) 3095–3098
3097
O
H
Ph
O
H
DABCO (1 eq.)
Cs2CO3 (1.2 eq.)
NaH,
1) LHMDS,
PhSeCl
Ph
p-TsCl
O
H
O
N
Ts
CH3CN, 80ºC, 12h.
O
2) m-CPBA
N
Ts
N
H
N
Ts
O
O
N
Ts
O
(1.5 eq.)
Ph
6 (55%)
not detected
2c (85%)
1b
3c (83%)
Br
base
+
+
+
R3N
R3N
Ph
O
R3N
+
Ph
NR3
Ph
Ph
H
+
R3N
O
Ph
O
O
N
Ts
O
N
Ts
H
N
Ts
C
O
O
O
O
N
Ts
N
H2O
Ts
A
B
D
E
Scheme 3. Synthesis and reaction course for product 6.
Acknowledgements
Funding of this project by Spanish MEC (No. CTQ2009-007738/
BQU) and FUSP-CEU (PC16/09) is acknowledged. I.S.-V. thanks the
Fundación San Pablo-CEU for pre-doctoral fellowship.
Supplementary data
Supplementary data (experimental procedures and spectro-
scopic data and spectra for new compounds) associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
1. For reviews see: (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
Rev. 2003, 103, 977–1050; (b) Donaldson, W. A. Tetrahedron 2001, 57, 8589–
8627; (c) Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789–2834;
(d) Burgess, K.; Ho, K.-K.; Moye-Sherman, D. Synlett 1994, 575–583; (e) Li, A.-
H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341–2372.
2. Maas, G. Chem. Soc. Rev. 2004, 33, 183–190; Recent examples: (a) Schneider, T.
F.; Kaschel, J.; Dittrich, B.; Werz, D. B. Org. Lett. 2009, 11, 2317–2320; (b)
Ruppel, J. V.; Gauthier, T. J.; Snyder, N. L.; Perman, J. A.; Zhang, X. P. Org. Lett.
2009, 11, 2273–2276; (c) Gregg, T. M.; Farrugia, M. K.; Frost, J. R. Org. Lett. 2009,
11, 4434–4436.
3. Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J. Tetrahedron 2003, 59, 5623–5634;
For recent methylene transfer reactions see also: (a) Zimmer, L. E.; Charette, A.
B. J. Am. Chem. Soc. 2009, 131, 15624–15626; (b) Hardee, D. J.; Lambert, T. H. J.
Am. Chem. Soc. 2009, 131, 7536–7537.
4. (a) Yamada, S.; Yamamoto, J.; Ohta, E. Tetrahedron Lett. 2007, 48, 855–857; (b)
McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org. Chem. 2006, 71, 7494–7497; (c)
Kojima, S.; Hiroike, K.; Ohkata, K. Tetrahedron Lett. 2004, 45, 3565–3568; (d) Ye,
S.; Huang, Z.-Z.; Xa, C.-A.; Tang, Y.; Dai, L.-X. J. Am. Chem. Soc. 2002, 124, 2432–
2433; (e) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni,
M. Angew. Chem., Int. Ed. 2001, 41, 1433–1436.
5. Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 5596–5605.
6. Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003, 42, 828–
831.
7. (a) Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew.
Chem., Int. Ed. 2004, 43, 4641–4644; (b) Bremeyer, N.; Smith, S. C.; Ley, S. V.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 2681–2684; (c) Johansson, C. C. C.;
Bremeyer, N.; Owen, D. M.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2006, 45, 6024–6028.
8. Xu, R.; Li, S.; Paruchova, J.; McBriar, M. D.; Guzik, H.; Palani, A.; Clader, J. W.;
Cox, K.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O’Neil, K.; Spar, B. D.; Weig,
B.; Weston, D. J. Bioorg. Med. Chem. 2006, 14, 3285–3599.
9. Suarez del Villar, I.; Gradillas, A.; Gómez-Ovalles, A.; Martínez-Murillo, R.;
Martínez, A.; Pérez-Castells, J. Chem. Lett. 2008, 37, 1222–1223.
10. The assignment of the relative stereochemistry of the cyclopropane was done
by NOE experiments (see Supplementary data) and confirmed with the values
of the coupling constants which were the typical for a trans cyclopropane
(J1,7 = 4.1 Hz/4.9 Hz).
Figure 1. ORTEP drawing for compound 6 with ellipsoids at 50% probability.
yield in 6 up to 70%. We show in Scheme 2 a reaction course that
could explain the formation of 6.
The reaction must begin with the formation of the lactam enolate
A that attacks the carbonyl group of the ammonium salt formed by
reaction of DABCO with the bromoketone. To check this point we
performed a reaction in the absence of DABCO observing no conver-
sion into product 6. Once zwitterionic intermediate B is formed, a
process possibly of type E1cB would drive to intermediate C. The sta-
bilization exerted by the phenyl group must be critical to favour the
elimination step as the reaction with other bromoketones or bromo-
esters did not take place. Indeed, we carried out reactions with
trifluoromethyl bromomethylketone and with tert-butyl bromoace-
tate observing no reaction, and recovering the starting material.
Lactam C must be opened under these basic conditions giving D
whose amino group attacks the a,b-unsaturated acid moiety provid-
ing E. This intermediate suffers a second cyclization by elimination
of DABCO to give finally product 6. This compound is obtained with
cis stereochemistry at the ring fusion.
In conclusion, we have developed the synthesis of new cyclo-
propane containing lactams and lactones through an efficient
nitrogen ylide-mediated procedure. The reaction tolerates different
alkyl halides. The behaviour of the seven-membered lactam 3c was
especially interesting due to a rearrangement leading to a bicyclic
compound consisting of two five-membered rings. Further exten-
sion of this process to other substrates is underway in our
laboratories.