LETTER
Aromatic Amination Approach towards Ancistrocladinium A/B
943
Blacker, A. J.; Marples, B. A. Tetrahedron 2006, 62, 6607.
(d) Page, P. C. B.; Buckley, B. R.; Rassias, G. A.; Blacker,
A. J. Eur. J. Org. Chem. 2006, 803.
(8) Wolfe, J. P.; Ahman, J.; Sadighi, J. P.; Singer, R. A.;
Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6367.
(9) Mann, G.; Hartwig, J. F.; Driver, M. S.; Fernandez-Rivas, C.
J. Am. Chem. Soc. 1998, 120, 827.
(10) Meneyrol, J.; Helissey, P.; Tratrat, S.; Giorgi-Renault, S.;
Husson, H.-P. Synth. Commun. 2001, 31, 987.
(11) Page, P. C. B.; Buckley, B. R.; Christie, S. D. R.; Edgar, M.;
Poulton, A. M.; Elsegood, M. R. J.; McKee, V.
J. Organomet. Chem. 2005, 690, 6210.
(12) General Procedure
A 50 mL round-bottomed flask was charged with Pd2(dba)3
(0.088 mmol), ( )-BINAP (0.18 mmol), and toluene (6 mL).
The resulting solution was degassed for 10 min before being
heated to 110 °C for 15 min. The reaction mixture was
allowed to cool to r.t. before NaOt-Bu (4.1 mmol), the aryl
bromide (2.2 mmol), and tetrahydroquinoline or
tetrahydroisoquinoline (4.4 mmol) were added. The
resulting mixture was heated under reflux for 4–16 h, before
being cooled to r.t. and filtered through a pad of Celite®.
Solvents were removed under reduced pressure and the
crude material purified by column chromatography (silica
gel, 99:1 light PE–EtOAc).
Figure 2 X-ray crystal structure of compound 18
Data for Compound 9
Colorless solid, 99% yield (0.56 g). IR (thin film): nmax
In conclusion we have developed a high yielding ap-
proach to N-aryl tetrahydroisoquinolines and tetrahydro-
quinolines in one step from readily available starting
materials. We have used this methodology to prepare the
full carbon skeleton of the ring system of ancistrocladini-
um A in one step, and we are currently pursuing this meth-
odology for the total synthesis of several secondary
metabolites from the tropical lianas of the Ancistrocla-
daceae and Dioncophyllaceae families.
=
1627, 1265, 740 cm–1. 1H NMR (400 MHz, CDCl3): d = 3.04
(2 H, t, J = 11.6 Hz, CH2CH2), 3.67 (2 H, t, J = 11.6 Hz,
CH2CH2), 4.51 (2 H, s, CH2), 7.17–7.21 (5 H, m, ArH),
7.26–7.28 (1 H, m, ArH), 7.33–7.36 (1 H, m, ArH), 7.39–
7.41 (1 H, m, ArH), 7.76–7.68 (3 H, m, ArH). 13C NMR (100
MHz, CDCl3): d = 29.19 (CH2), 47.18 (CH2), 51.13 (CH2),
109.37 (ArCH), 118.73 (ArCH), 123.01 (ArCH), 126.10
(ArCH), 126.29 (ArCH), 126.42 (ArCH), 126.58 (ArCH),
126.60 (2 ArCH), 127.46 (ArCH), 128.07 (ArC), 128.64
(ArCH), 128.84 (ArCH), 134.36 (ArC), 134.76 (ArC),
148.39 (ArCN). MS (FAB+): m/z (%) = 259 (100) [M+], 258
(64). HRMS (ES): m/z calcd for [C19H17N]: 259.1361; found
[M+]: 259.1365.
Acknowledgment
This investigation has enjoyed the support of Loughborough Uni-
versity. We are indebted to The Royal Society for an Industry Fel-
lowship (to P.C.B.P.) and Research Councils UK for a RCUK
Fellowship (to B.R.B.).
(13) We have found that isolation of isoquinolinium salts as
crystalline solids can be easily achieved when counterion
exchange with sodium tetraphenylborate is carried out. See,
for example, ref. 7a.
(14) Crystal Data for 18
References and Notes
C19H17N, M = 259.34, a = b = 7.0515 (8), c = 28.297 (3) Å,
a = b = g = 90°, V = 1407.0(3) Å3. pale yellow crystal,
1.04 × 0.47 × 0.25 mm3, Dcalc = 1.224 g cm–3, m = 0.071
mm–1; 13580 data, 1247 unique (Rint = 0.0757). Data were
measured on a Bruker APEX II diffractometer with MoKa
radiation at 150 K.15 Data were corrected for absorption. The
structure was solved by direct methods and refined on F2
values.16,17 Half the molecule is unique and the structure is
50/50 disordered at C(2A)/C(2X) and at N(1)/C(10).
R = 0.0489 [for 1134 observed data with F2 > 2s(F2)] and
wR = 0.1278 (for all data). Crystal data have been deposited
with the Cambridge Crystallographic Data Centre. CCDC:
758059. Data can be retrieved in CIF format by quoting the
relevant deposition number in an e-mail request to
(1) Kamikawa, K.; Uemura, M. Synlett 2000, 938.
(2) Kamikawa, K.; Watanabe, T.; Daimon, A.; Uemura, M.
Tetrahedron 2000, 56, 2325.
(3) Kozlowski, M. C.; Dugan, E. C.; DiVirgilio, E. S.;
Maksimenka, K.; Bringmann, G. Adv. Synth. Catal. 2007,
349, 583.
(4) Vorogushin, A. V.; Wulff, W. D.; Hansen, H. J. J. Org.
Chem. 2003, 68, 9618.
(5) Bringmann, G.; Guider, T.; Reichert, M.; Meyer, F. Org.
Lett. 2006, 8, 1037.
(6) Bringmann, G.; Mutanyatta-Comar, J.; Greb, M.;
Rüdenauer, S.; Noll, T. F.; Irmer, A. Tetrahedron 2007, 63,
1755.
(7) (a) Page, P. C. B.; Rassias, G. A.; Barros, D.; Ardakani, A.;
Buckley, B.; Bethell, D.; Smith, T. A. D.; Slawin, A. M. Z.
J. Org. Chem. 2001, 66, 6926. (b) Page, P. C. B.; Buckley,
B. R.; Heaney, H.; Blacker, A. J. Org. Lett. 2005, 7, 375.
(c) Page, P. C. B.; Buckley, B. R.; Barros, D.; Heaney, H.;
(15) SAINT and APEX 2 (2008) software for CCD
diffractometers. Bruker AXS Inc., Madison, USA.
(16) Sheldrick, G. M. SHELXTL User Manual, Version 6.10;
Bruker AXS Inc.: Madison USA, 2000.
(17) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
Synlett 2010, No. 6, 939–943 © Thieme Stuttgart · New York