5626 Inorganic Chemistry, Vol. 49, No. 12, 2010
Ladouceur et al.
Whereas color tuning is reasonably well understood, it is far
less clear what strategies to use to augment emission quantum
yields. Recently, several examples3c,d,i,l,18,20 of highly lumi-
nescent [min 20% and up to 85% in acetonitrile (ACN)]
cationic heteroleptic complexes have been reported, but
these, unsurprisingly, mostly emit at high energy in the
green-to-blue region, adhering to the energy gap law that
describes the dependence of nonradiative decay processes
(and thus the quantum yield) on the emission energy of the
luminophore.21 A key challenge in LEEC design is to develop
strategies that enable controlled color tuning, especially inthe
red, green, and blue regions, without adversely affecting
phosphorescent quantum yields. Architectures that can meet
this challenge would thus be highly desirable.
In this paper, we report the synthesis of a new family of
5,50-diarylbipyridines (bpy*) and their incorporation as an-
cillary ligands into luminescent cationic iridium complexes of
the general formula [(ppy)2Ir(bpy*)]PF6. This family is sub-
divided into two series: the first series contains aryl groups
substituted with electron-releasing groups at the 40 position,
while the second series also possesses methyl groups at the 20
and 60 positions. The latter series is designed to sequester the
arenes into an orthogonal orientation relative to the diimine.
The two series of isostructural complexes systematically
probe the interplay between the conjugative effects and
electron-releasing power of remote substituents, while simul-
taneously protecting the iridium center due to their steric
effects. These are compared to an archetypal complex,
[(ppy)2Ir(bpy)]þ. A detailed photophysical and electroche-
mical investigation is described in order to assess the afore-
mentioned structure-property relationship and its impact on
the quantum efficiency. We will show that the majority of
these complexes emit from an admixture of ligand-to-ligand
charge-transfer (3LLCT)/3MLCT states, while complexes
possessing potent electron-releasing substituents on the aryls
emit from an intraligand charge-transfer (3ILCT) state with a
marked decrease in the quantum yields.
(3) (a) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403,
750. (b) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest,
S. R. Appl. Phys. Lett. 1999, 75, 4. (c) Nazeeruddin, M. K.; Wegh, R. T.; Zhou,
€
Z.; Klein, C.; Wang, Q.; DeAngelis, F.; Fantacci, S.; Gratzel, M. Inorg. Chem.
2006, 45, 9245. (d) Bolink, H. J.; Cappelli, L.; Coronado, E.; Gratzel, M.; Orti, E.;
Costa, R. D.; Viruela, P. M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2006, 128,
14786. (e) Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S. T.;
Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763. (f)
~
Slinker, J. D.; Bernards, D. A.; Houston, P. L.; Abruna, H. D.; Bernhard, S.;
Malliaras, G. G. Chem. Commun. 2003, 19, 2392. (g) Lowry, M. S.; Hudson,
W. R.; Pascal, R. A., Jr.; Bernhard, S. J. Am. Chem. Soc. 2004, 126, 14129. (h)
Slinker, J. D.; Koh, C. Y.; Malliaras, G. G.; Lowry, M. S.; Bernhard, S. Appl.
Phys. Lett. 2005, 86, 173506. (i) Tamayo, A. B.; Garon, S.; Sajoto, T.; Djurovich,
P. I.; Tsyba, I. M.; Bau, R.; Thompson, M. E. Inorg. Chem. 2005, 44, 8723. (j)
Lowry, M. S.; Bernhard, S. Chem.;Eur. J. 2006, 12, 7970. (k) Su, H.-C.; Wua,
C.-C.; Fang, F.-C.; Wong, K.-T. Appl. Phys. Lett. 2006, 89, 261118. (l) Su, H.-C.;
Fang, F.-C.; Hwu, T.-Y.; Hsieh, H.-H.; Chen, H.-F.; Lee, G.-H.; Peng, S.-M.;
Wong, K.-T.; Wu, C.-C. Adv. Funct. Mater. 2007, 17, 1019. (m) Slinker, J. D.;
A combined density functional theory (DFT) and time-
dependent DFT (TD-DFT) study provides insight into the
nature of the ground (S0) and excited (S1 and T1) states with
resulting detailed assignments of the orbitals involved in
absorption and emission transitions. The theoretical analysis
corroborates the experimental study. These will serve to
guide ligand design to develop complexes for better perform-
ing OLEDs for visual display and lighting applications.
~
Rivnay, J.; Moskowitz, J. S.; Parker, J. B.; Bernhard, S.; Abruna, H. D.; Malliaras,
G. G. J. Mater. Chem. 2007, 17, 2976. (n) Neve, F.; LaDeda, M.; Crispini, A.;
Bellusci, A.; Puntoriero, F.; Campagna, S. Organometallics 2004, 23, 5856. (o)
Lee, J. K.; Yoo, D. S.; Handy, E. S.; Rubner, M. F. Appl. Phys. Lett. 1996, 69,
1686. (p) Maness, K. M.; Masui, H.; Wightman, R. M.; Murray, R. W. J. Am.
Chem. Soc. 1997, 119, 3987. (q) Handy, E. S.; Pal, A. J.; Rubner, M. F. J. Am.
Chem. Soc. 1999, 121, 3525. (r) Gao, F. G.; Bard, A. J. J. Am. Chem. Soc. 2000,
122, 7426. (s) Buda, M.; Kalyuzhny, G.; Bard, A. J. J. Am. Chem. Soc. 2002, 124,
~
6090. (t) Bernhard, S.; Barron, J. A.; Houston, P. L.; Abruna, H. D.; Ruglovsky,
J. L.; Gao, X.; Malliaras, G. G. J. Am. Chem. Soc. 2002, 124, 13624. (u)
Rudmann, H.; Shimada, S.; Rubner, M. F. J. Appl. Phys. 2003, 94, 115. (v)
Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras,
G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712. (w) Rudmann, H.; Shimida, S.;
Rubner, M. F. J. Am. Chem. Soc. 2002, 124, 4918. (x) Nazeeruddin, M. K.;
(10) Ho, M.-L.; Hwang, F.-M.; Chen, P.-N.; Hu, Y.-H.; Cheng, Y.-M.;
Chen, K.-S.; Lee, G.-H.; Chi, Y.; Chou, P.-T. Org. Biomol. Chem. 2006, 4, 98.
(11) Zhao, Q.; Cao, T.; Li, F.; Li, X.; Jing, H.; Yi, T.; Huang, C.
Organometallics 2007, 26, 2077.
€
Hunmphry-Baker, R.; Berner, D.; Rivier, B. S.; Zuppiroli, L.; Gratzel, M. J. Am.
(12) Schmittel, M.; Lin, H. Inorg. Chem. 2007, 46, 9139.
Chem. Soc. 2003, 125, 8790. (y) Zysman-Colman, E.; Slinker, J. D.; Parker, J. B.;
Malliaras, G. G.; Bernhard, S. Chem. Mater. 2008, 20, 388. (z) Adachi, C.;
Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. 2001, 90, 5048. (aa)
Bolink, H. J.; Coronado, E.; Costa, R. D.; Ort, E.; Sessolo, M.; Graber, S.; Doyle,
K.; Neuburger, M.; Housecroft, C. E.; Constable, E. C. Adv. Mater. 2008, 20,
3910.
(13) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of
Photochemistry; Taylor and Francis: Boca Raton, FL, 2006.
(14) (a) Ohsawa, Y.; Sprouse, S.; King, K. A.; DeArmond, M. K.; Hanck,
K. W.; Watts, R. J. J. Phys. Chem. 1987, 91, 1047. (b) Garces, F. O.; King,
K. A.; Watts, R. J. Inorg. Chem. 1988, 27, 3464.
€
(15) (a) Colombo, M. G.; Hauser, A.; Gudel, H. U. Inorg. Chem. 1993, 32,
(4) (a) Tinker, L. L.; McDaniel, N. D.; Curtin, P. N.; Smith, C. K.;
Ireland, M. J.; Bernhard, S. Chem.;Eur. J. 2007, 13, 8726. (b) Goldsmith,
J. I.; Hudson, W. R.; Lowry, M. S.; Anderson, T. H.; Bernhard, S. J. Am. Chem.
Soc. 2005, 127, 7502.
3088. (b) Colombo, M. G.; G€udel, H. U. Inorg. Chem. 1993, 32, 3081. (c)
Colombo, M. G.; Brunold, T. C.; Riedener, T.; Guedel, H. U.; Fortsch, M.; Buergi,
H.-B. Inorg. Chem. 1994, 33, 545.
(16) Goze, C.; Chambron, J.-C.; Heitz, V.; Pomeranc, D.; Salom-Roig,
X. J.; Sauvage, J.-P.; Morales, A. F.; Barigelletti, F. Eur. J. Inorg. Chem.
2003, 2003, 3752.
(17) (a) Avilov, I.; Minoofar, P.; Cornil, J.; De Cola, L. J. Am. Chem. Soc.
2007, 129, 8247. (b) Hay, P. J. J. Phys. Chem. A 2002, 106, 1634. (c) Lamansky,
S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.;
Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704. (d) Lamansky,
S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows,
P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. (e) Li,
J.; Djurovich, P. I.;Alleyne, B. D.; Yousufuddin, M.; Ho, N. N.;Thomas, J. C.;Peters,
J. C.; Bau, R.; Thompson, M. E. Inorg. Chem. 2005, 44, 1713. (f) Kwon, T.-H.; Cho,
H. S.; Kim, M. K.; Kim, J.-W.; Kim, J.-J.; Lee, K. H.; Park, S. J.; Shin, I.-S.; Kim, H.;
Shin, D. M.; Chung, Y. K.; Hong, J.-I. Organometallics 2005, 24, 1578.
(18) De Angelis, F.; Fantacci, S.; Evans, N.; Klein, C.; Zakeeruddin,
S. M.; Moser, J.-E.; Kalyanasundaram, K.; Bolink, H. J.; Gratzel, M.;
Nazeeruddin, M. K. Inorg. Chem. 2007, 46, 5989.
(5) (a) Lo, K. K.-W.; Ng, D. C.-M.; Chung, C.-K. Organometallics 2001,
20, 4999. (b) Iridium complexes have been incorporated into dendritic structures.
See: Lo, S. C.; Namdas, E. B.; Burn, P. L.; Samuel, I. D. W. Macromolecules
2003, 36, 9721. (c) Lo, K. K.-W.; Chung, C.-K.; Zhu, N. Chem.;Eur. J. 2003, 9,
475. (d) Lo, K. K.-W.; Chung, C.-K.; Lee, T. K.-M.; Lui, L.-H.; Tsang, K. H.-K.;
Zhu, N. Inorg. Chem. 2003, 42, 6886. (e) Lo, K. K.-W.; Chan, J. S.-W.; Chung,
C.-K.; Tsang, V. W.-H.; Zhu, N. Inorg. Chim. Acta 2004, 357, 3109. (f) Lo,
K. K.-W.; Hui, W.-K.; Chung, C.-K.; Tsang, K. H.-K.; Ng, D. C.-M.; Zhu, N.;
Cheung, K.-K. Coord. Chem. Rev. 2005, 249, 1434. (g) Lo, K. K.-W.; Lau,
J. S.-Y. Inorg. Chem. 2007, 46, 700. (h) Lo, K. K.-W.; Zhang, K. Y.; Leung, S.-K.;
Tang, M.-C. Angew. Chem., Int. Ed. 2008, 47, 2213. (i) Lo, K. K.-W.; Chan,
J. S.-W.; Lui, L.-H.; Chung, C.-K. Organometallics 2004, 23, 3108.
(6) Kim, J. I.; Shin, I.-S.; Kim, H.; Lee, J.-K. J. Am. Chem. Soc. 2005, 127,
1614.
(7) Di Marco, G.; Lanza, M.; Mamo, A.; Stefio, I.; Di Pietro, C.; Romeo,
G.; Campagna, S. Anal. Chem. 1998, 70, 5019.
(8) Zhao, Q.; Liu, S.; Shi, M.; Li, F.; Jing, H.; Yi, T.; Huang, C.
Organometallics 2007, 26, 5922.
(19) King, K. A.; Watts, R. J. J. Am. Chem. Soc. 1987, 109, 1589.
(20) Lafolet, F.; Welter, S.; Popovic, Z.; Cola, L. D. J. Mater. Chem. 2005,
15, 2820.
(9) Goodall, W.; Williams, J. A. G. J. Chem. Soc., Dalton Trans. 2000,
2893.
(21) Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. J. Am.
Chem. Soc. 1982, 104, 630.