ARTICLE
(Tg) around 152.0 ꢁC, however, without any melting peaks.
The Tg is surprisingly higher than those of anthracene-con-
taining small molecules, for example, 104 C of 9-phenyl-10-
11 Wild, A.; Egbe, A. M. D.; Birckner, E.; Cimrova´, V.; Baumann,
R.; Grummt, U.; Schubert, S. U. J Polym Sci Part A: Polym
Chem 2009, 47, 2243–2261.
ꢁ
(4-triphenylamine)-anthracene.33 We suppose the increase of
Tg was due to the introduction of regular ladder polysiloxane
chain. For DPAnLP, its high Tg is probably an underlying rea-
son for its great thermal and color stability, which opens a
promising synthetic strategy in polymer chemistry to make
stable and efficient luminescence polymer materials.
12 Mo, Y.; Deng, X.; Jiang, X.; Cui, Q. J Polym Sci Part A:
Polym Chem 2009, 47, 3286–3295.
13 Burn, P. L.; Lo, S. C. I.; Samuel, D. W. Adv Mater 2007, 19,
1675–1688.
14 Wu, W. C.; Yeh, H. C.; Chan, L. H.; Chen, C. T. Adv Mater
2002, 14, 1072–1075.
15 Amrutha, S. R.; Jayakannan, M. Macromolecules 2007, 40,
CONCLUSIONS
2380–2391.
In summary, a blue light PL DPAnLP was synthesized using
the SCP method. Its high regularity was well characterized
using XRD and 29Si NMR. Compared with common anthra-
cene-containing compounds, the ladder structure and the
tert-butyl group effectively prevent the undesired aggrega-
tion of chromophores and offer a higher UF of 0.89. The
unique ladder polysiloxane structure offers DPAnLP better
film-forming ability, thermal stability, and emission stability.
Electrochemistry measurement shows a low-lying HOMO
level. Moreover, our versatile synthetic strategy offers an op-
portunity to prepare various PL polymeric materials and
may lead to preparation of electroluminescence polymeric
materials after slight modification.
16 Qiu, S.; Lu, P.; Liu, X.; Shen, F. Z.; Liu, L. L.; Ma, Y. G.;
Shen, J. C. Macromolecules 2003, 36, 9823–9829.
17 Mikroyannidis, J. A.; Fenenko, L.; Yahiro, M.; Adachi, C.
J Polym Sci Part A: Polym Chem 2007, 45, 4661–4670.
18 Zhu, B.; Han, Y.; Sun, M. H.; Bo, Z. S. Macromolecules 2007,
40, 4494–4500.
19 Gu, H. W.; Xie, P. D.; Shen, Y.; Fu, P. F.; Zhang, J. M.; Shen,
Z. R.; Tang, Y. X.; Cui, L. B.; Kong, X.; Wei, F.; Wu, Q.; Bai, F.
L.; Zhang, R. B. Adv Mater 2003, 15, 1355–1358.
20 Zhang, Y.; Cao, M.; Guo, G. Q.; Sun, J.; Li, Z.; Xie, P.;
Zhang, R. B.; Fu, P. F. J Mater Chem 2002, 12, 2325–2330.
21 Brown, J. F.; Vogt, L. H.; Katchman, A.; Eustance, J. W.;
Financial support was received from the Outstanding Youth
Fund (No. 20425414) and the NSFC (Nos. 50073028,
29974036, 20174047, 50521302) as well as MOST under grant
No. 2007CB935902 and 2007CB935904.
Kiser, K. M.; Krantz, K. W.
6194–6195.
J Am Chem Soc 1960, 82,
22 Andrianov, K. A.; Nikitenkov, V. E.; Kukharchuk, L. A. Vyso-
komol Soedin 1960, 2, 1099–1102.
23 Zhou, Q. L.; Yan, S. K.; Han, C. C.; Xie, P.; Zhang, R. B. Adv
Mater 2008, 20, 2970–2976.
REFERENCES AND NOTES
24 Tang, H. D.; Sun, J.; Jiang, J. Q.; Zhou, X. S.; Hu, T. J.; Xie,
1 Grimsdale, A. C.; Mullen, K. In Emissive Materials: Nanoma-
¨
P.; Zhang, R. B. J Am Chem Soc 2002, 124, 10482–10488.
terials; Akihiro, A.; Ruth, D.; et al.; Springer-Verlag: Berlin,
2006; pp 1–82.
25 Wan, Y. Z.; Yang, L. M.; Zhang, J. C.; Zhang, P. P.; Fu, P. F.;
Zhang, T. Y.; Xie, P.; Zhang, R. B. Macromolecules 2006, 39,
541–847.
2 Chi, C.; Mikhailovsky, A.; Bazan, C. G. J Am Chem Soc 2007,
129, 11134–11145.
26 Zhou, Q. L.; Zhang, J. T.; Ren, Z. J.; Yan, S. K.; Xie, P.;
3 Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280,
Zhang, R. B. Macromol Rapid Commun 2008, 29, 1259–1263.
1741–1744.
27 Danel, K.; Huang, T. H.; Lin, J. T.; Tao, Y. T.; Chuen, C. H.
4 Meier, H.; Ickenroth, D.; Stalmach, U.; Koynov, K.; Bahtiar, A.;
Chem Mater 2002, 14, 3860–3865.
Bubeck, C. Eur J Org Chem 2001, 4431–4443.
28 Kakudo, M.; Watase, T. J Chem Phys 1953, 21, 167–168.
5 Weitzel, H. P.; Mullen, K. Macromol Chem 1990, 191,
¨
2815–2835.
29 Williams, E. A.; Cargioli, J. D.; Larochelle, R. W. J Organo-
met Chem 1976, 108, 153–158.
6 Adachi, C.; Tsutsui, T.; Saito, S. Appl Phys Lett 1990, 56,
799–801.
30 Zhang, Z. X.; Hao, J. K.; Xie, P.; Zhang, X. J.; Han, C. C.;
Zhang, R. B. Chem Mater 2008, 20, 1322–1330.
7 Boyd, T. J.; Schrock, R. R. Macromolecules 1999, 32,
6608–6618.
31 Berlman, I. B. Handbook of Fluorescence Spectra of Aro-
matic Molecules, 2nd ed.; Academic Press: New York, 1971; pp
77–80.
8 Lu, J. M.; Xu, Q. F.; Yuan, X.; Xia, X. W.; Wang, L. H. J Polym
Sci Part A: Polym Chem 2007, 45, 3894–3901.
32 Hamai, S.; Hirayama, F. J Phys Chem 1983, 87, 83–89.
9 Yen, H.; Liou, G. J Polym Sci Part A: Polym Chem 2009, 47,
1584–1594.
33 Tao, S.; Zhou, Y.; Lee, C. S.; Lee, S. T.; Huang, D.; Zhang, X.
J Phys Chem C 2008, 112, 14603–14606.
10 Ju, J. U.; Chung, D. S.; Kim, S. O.; Jung, S. O.; Park, C. E.;
Kim, Y.; Kwon, S. J Polym Sci Part A: Polym Chem 2009, 47,
1609–1616.
34 Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbase-
karan, M.; Woo, E. P. Appl Phys Lett 1998, 73, 2453–2455.
HIGH-EFFICIENCY PHOTOLUMINESCENCE DPAnLP, ZHANG ET AL.
2497