PRACTICAL SYNTHETIC PROCEDURES
Asymmetric Conjugate Addition Reactions
1571
Conjugate Addition Followed by Reduction of the Aldehyde;
Typical Procedure for (2S,3R)-2-Ethyl-4-nitro-3-phenylbutan-
1-ol (2)
(2) For early examples, see: (a) Betancort, J. M.; Barbas, C. F.
III Org. Lett. 2001, 3, 3737. (b) Alexakis, A.; Andrey, O.
Org. Lett. 2002, 4, 3611.
TFA·H-D-Pro-Pro-Glu-NH2 (1·TFA; 62.0 mg, 0.136 mmol, 0.02
equiv) was suspended in i-PrOH (1 mL) and NMM (15 mL, 0.136
mmol, 0.02 equiv) followed by addition of butyraldehyde (675 mL,
7.5 mmol, 1.1 equiv) and CHCl3 (9 mL). The colorless solution was
then cooled to 0 °C, b-nitrostyrene (1.01 g, 6.80 mmol, 1.0 equiv)
was added and the resulting yellow solution was stirred for 48 h at
0 °C (or 24 h when using dried solvents and reagents). After this
time, TLC analysis (pentane–EtOAc, 10:1) showed complete con-
version. The reaction mixture was then cooled to –15 °C and a
solution of borane in THF (1 M, 8.0 mL, 8.2 mmol, 1.2 equiv) was
added dropwise. After stirring for 1 h at –15 °C, the mixture was
quenched with an excess of concd. AcOH (2.0 mL, 31.7 mmol, 4.7
equiv) and concentrated under reduced pressure. The crude product
was dissolved in CH2Cl2–pentane (1:2 v/v) and purified by flash
chromatography over silica gel (pentane–EtOAc, 5:1) to obtain ni-
troalcohol 2 (1.34 g, 93%) as a colorless oil.
1H NMR (400 MHz, CDCl3, 25 °C): d = 7.36 (m, 2 H, PhH), 7.30
(m, 1 H, PhH), 7.25 (m, 2 H, PhH), 4.94 (dd, J = 12.7, 5.5 Hz, 1 H,
CH2NO2), 4.84 (dd, J = 12.7, 10.1 Hz, 1 H, CH2NO2), 3.79 (dd,
J = 11.1, 3.4 Hz, 1 H, CHHOH), 3.73 (ddd, J = 10.1, 7.7, 5.6 Hz,
1 H, CHPh), 3.63 (dd, J = 11.1, 6.0 Hz, 1 H, CHHOH), 1.79 (m,
2 H, CHCH2OH and CH2OH), 1.40 (dqd, J = 15.0, 7.5, 4.0 Hz, 1 H,
CH2CH3), 1.23 (qdd, J = 14.3, 9.0, 7.3 Hz, 1 H, CH2CH3), 0.92 (t,
J = 7.4 Hz, 3 H, CH3).
(3) For recent reviews on 1,4-addition reactions using
organocatalysts, see: (a) Tsogoeva, S. B. Eur. J. Org. Chem.
2007, 1701. (b) Sulzer-Mossé, S.; Alexakis, A. Chem.
Commun. 2007, 3123. (c) Vicario, J. L.; Badía, D.; Carrillo,
L. Synthesis 2007, 2065. (d) Almasi, D.; Alonso, D. A.;
Nájera, C. Tetrahedron: Asymmetry 2007, 18, 299.
(e) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem.
Rev. 2007, 107, 5471.
(4) For selected examples of conjugate additions between
aldehydes and nitroolefins catalyzed by organocatalysts,
see: (a) Zheng, Z.; Perkins, B. L.; Ni, B. J. Am. Chem. Soc.
2010, 132, 50. (b) Alza, E.; Pericàs, M. A. Adv. Synth. Catal.
2010, 352, in press; DOI 10.1002/adsc.200900817.
(c) Lombardo, M.; Chiarucci, M.; Quintavalla, A.;
Trombini, C. Adv. Synth. Catal. 2009, 351, 2801. (d) Luo,
R.-S.; Weng, J.; Ai, H.-B.; Chan, A. S. C. Adv. Synth. Catal.
2009, 351, 2449. (e) Chang, C.; Li, S.-H.; Reddy, R. J.;
Chen, K. Adv. Synth. Catal. 2009, 351, 1273. (f) Ruiz, N.;
Reyes, E.; Vicario, J. L.; Badia, D.; Carrillo, L.; Uria, U.
Chem. Eur. J. 2008, 14, 9357. (g) Belot, S.; Massaro, A.;
Tenti, A.; Mordini, A.; Alexakis, A. Org. Lett. 2008, 10,
4557. (h) Chi, Y.; Guo, L.; Kopf, N. A.; Gellman, S. H.
J. Am. Chem. Soc. 2008, 130, 5608. (i) García-García, P.;
Ladépeche, A.; Halder, R.; List, B. Angew. Chem. Int. Ed.
2008, 47, 4719. (j) Hayashi, Y.; Itoh, T.; Ohkubo, M.;
Ishikawa, H. Angew. Chem. Int. Ed. 2008, 47, 4722.
(k) Zhu, S.; Yu, S.; Ma, D. Angew. Chem. Int. Ed. 2008, 47,
545. (l) McCooey, S. H.; Connon, S. J. Org. Lett. 2007, 9,
599. (m) Palomo, C.; Vera, S.; Mielgo, A.; Gómez-Bengoa,
E. Angew. Chem. Int. Ed. 2006, 45, 5984. (n) Lalonde, M.
P.; Chen, Y.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006,
45, 6366. (o) Wang, J.; Li, J.; Lou, B.; Zu, L.; Guo, H.;
Wang, W. Chem. Eur. J. 2006, 12, 4321. (p) Mossé, S.;
Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett.
2006, 8, 2559. (q) Mase, N.; Watanabe, K.; Yoda, H.;
Takabe, K.; Tanaka, F.; Barbas, C. F. III J. Am. Chem. Soc.
2006, 128, 4966. (r) Hayashi, Y.; Gotoh, H.; Hayashi, T.;
Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212.
(5) Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem.
Int. Ed. 2008, 47, 1871.
13C NMR (100 MHz, CDCl3, 25 °C): d = 139.1, 129.2, 128.6, 127.9,
79.2, 62.5, 46.3, 45.8, 21.9, 12.1.
Anal. Calcd for C12H17NO3: C, 64.55; H, 7.67; N, 6.27. Found: C,
64.30; H, 7.66; N, 6.21.
The diastereomeric ratio (syn:anti) and the enantiomeric excess
were determined by HPLC using a Chiracel AD-H column (n-hex-
ane–i-PrOH, 99.4:0.6; 25 °C) at a flow rate of 1.2 mL/min, UV de-
tection at 210 nm: tR (anti, minor) = 101.7, tR (anti, major) = 107.4,
tR (syn, minor) = 115.5 min, tR (syn, major) = 119.4 min.
Acknowledgment
This work was supported by BACHEM and the Swiss National
Science Foundation. We thank the EU for support through the
Research Training Network REVCAT. H.W. is grateful to
BACHEM for an endowed professorship.
(6) Wiesner, M.; Revell, J. D.; Tonazzi, S.; Wennemers, H.
J. Am. Chem. Soc. 2008, 130, 5610.
(7) Wiesner, M.; Neuburger, M.; Wennemers, H. Chem. Eur. J.
2009, 15, 10103.
(8) Wiesner, M.; Upert, G.; Angelici, G.; Wennemers, H. J. Am.
Chem. Soc. 2010, 132, 6.
(9) For the role of water and its effect on the reaction rate see ref.
8.
References
(1) For reviews, see: (a) Berner, O. M.; Tedeschi, L.; Enders, D.
Eur. J. Org. Chem. 2002, 1877. (b) Krause, N.; Hoffmann-
Röder, A. Synthesis 2001, 171.
Synthesis 2010, No. 9, 1568–1571 © Thieme Stuttgart · New York