R. Nishikawa-Shimono et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3305–3310
3309
an oxymethylene linker resulted in a slight loss of the potency (19:
IC50 = 38 nM). Interestingly, the inverse amide linker (20) retained
potent binding affinity (IC50 = 10 nM). These data supported the
importance of the hydrogen bond donor (NH) in the linker moiety
of the isoquinoline chemotype.
Subsequently, we examined the effects of substituents around
the carboxylic acid moiety on CRTH2 binding affinity (Table 3).
The carboxylic acid moiety is shared with the representative
CRTH2 antagonists and is essential for CRTH2 activity. Germinal
dimethylation of the methylene moiety next to the carboxylic acid
resulted in a 25-fold drop in potency (25: IC50 = 200 nM) compared
with the original compound 24. Insertion of an oxygen atom
between the carboxymethyl moiety and heteroaryl group resulted
in a slight loss in potency (33: IC50 = 25 nM). These data suggest
that the binding space of the CRTH2 receptor, where the acid moi-
ety of the antagonists interacted, is limited.
In addition, these isoquinoline derivatives were functionally
active and behaved as antagonists of PGD2 driven Ca2+ flux in
KB8 cells expressing human CRTH2.3,22 One of the most potent
antagonists, 6m (IC50 = 19 nM), was tested in a chemotaxis assay23
to determine its effectiveness (IC50 = 23 nM), which was in good
agreement with the CRTH2 antagonist potency. Furthermore, suffi-
cient level of selectivity was found for binding to CRTH2 over the
DP1 prostanoid receptor24 (IC50 >1
lM) and COX-1 and COX-2
enzymes25 (IC50 > 10
l
M).
In conclusion, we have identified the novel isoquinoline acetic
acid chemotype 6 as a potent CRTH2 antagonist. SAR of the scaffold
was explored, resulting in the identification of the compound 6m
(TASP0376377), which is a selective functional antagonist of
CRTH2. Studies are ongoing to explore the utility of these com-
pounds in inflammatory disease models and will be reported in
due course.
References and notes
1. Nagata, N.; Tanaka, K.; Ogawa, K.; Kemmotsu, K.; Imai, T.; Yoshie, O.; Abe, H.;
Tada, K.; Nakamura, M.; Sugamura, K.; Takano, K. J. Immunol. 1999, 162, 1278.
2. Nagata, K.; Hirai, H.; Tanaka, K.; Ogawa, K.; Aso, T.; Sugamura, K.; Nakamura,
M.; Takanoa, S. FEBS Lett. 1999, 459, 195.
3. Pettipher, R.; Hansel, T. T.; Armer, R. Nat. Rev. Drug Disc. 2007, 6, 313.
4. Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.;
Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med.
2001, 193, 255.
5. Monneret, G.; Gravel, S.; Diamond, M.; Rokach, J.; Powell, W. S. Blood 1942,
2001, 98.
6. Xue, L.; Gyles, S. L.; Wettey, F. R.; Gazi, L.; Townsend, E.; Hunter, M. G.;
Pettipher, R. J. Immunol. 2005, 175, 6531.
Table 2
In vitro data of isoquinoline derivatives with linker modification
O
N
X
Cl
Cl
W
CO2H
a
Compound
W
X
hCRTH2 binding IC50 (nM)
19
7. Evi Kostenis, E.; Ulven, T. Trend Mol. Med. 2006, 12, 148.
8. Satoh, T.; Moroi, R.; Aritake, K.; Urade, Y.; Kanai, Y.; Sumi, S.; Yokozeki, H.;
Hirai, H.; Nagata, K.; Hara, T.; Utsuyama, M.; Hirokawa, K.; Sugamura, K.;
Nishioka, K.; Nakamura, M. J. Immunol. 2006, 177, 2621.
9. Stearns, B. A.; Baccei, C.; Bain, G.; Broadhead, A.; Clark, R. C.; Coate, H.; Evans, J.
F.; Fagan, P.; Hutchinson, J. H.; King, C.; Lee, C.; Lorrain, D. S.; Prasit, P.;
Prodanovich, P.; Santini, A.; Scott, J. M.; Stock, N. S.; Truong, Y. P. Bioorg. Med.
Chem. Lett. 2009, 19, 4647.
10. Birkinshaw, T. N.; Teague, S. J.; Beech, C.; Bonnert, R. V.; Hill, S.; Patel, A.;
Reakes, S.; Sanganee, H.; Dougall, I. G.; Phillips, T. T.; Salter, S.; Schmidt, J.;
Arrowsmith, E. C.; Carrillo, J. J.; Bell, F. M.; Paine, S. W.; Weaver, R. Bioorg. Med.
Chem. Lett. 2006, 16, 4287.
11. Tumey, L. N.; Robarge, M. J.; Gleason, E.; Song, J.; Murphy, S. M.; Ekema, G.;
Doucette, C.; Hanniford, D.; Palmer, M.; Pawlowski, G.; Danzig, J.; Loftus, M.;
Hunady, K.; Sherf, B.; Mays, R. W.; Stricker-Krongrad, A.; Brunden, K. R.;
Bennani, Y. L.; Harrington, J. J. Bioorg. Med. Chem. Lett. 2010, 20, 3287.
12. Richard, E.; Armer, R. E.; Ashton, M. R.; Boyd, E. A.; Brennan, C. J.; Brookfield, F.
A.; Gazi, L.; Gyles, S. L.; Hay, P. A.; Hunter, M. G.; Middlemiss, D.; Whittaker, M.;
Xue, L.; Pettipher, R. J. Med. Chem. 2005, 48, 6174.
6m
NH
CO
O
14
NH
13
∗
∗
∗
∗
O
15
NH
4.0
16
17
18
19
20
NMe
NH
NH
O
CO
210
6.1
340
38
CH2
SO2
CH2
NH
CO
10
a
Mean values from at least two indepentent experiments. IC50 values were
determined from full 10-point, half-log concentration–response curves.
13. Ulven, T.; Gallen, M. J.; Nielsen, M. C.; Merten, N.; Schmidt, C.; Mohr, K.;
Tränklec, C.; Kostenis, E. Bioorg. Med. Chem. Lett. 2007, 17, 5924.
14. Armer, R. E.; WO 2005/121141; Chem. Abstr. 2005, 144, 51458.
15. Sandham, D. A.; Adcock, C.; Bala, K.; Barker, L.; Brown, Z.; Dubois, G.; Budd, D.;
Cox, B.; Fairhurst, R. A.; Furegati, M.; Leblanc, C.; Manini, J.; Profit, R.; Reilly, J.;
Stringer, R.; Schmidt, A.; Turner, K. L.; Watson, S. J.; Willis, J.; Williams, G.;
Wilson, C. Bioorg. Med. Chem. Lett. 2009, 19, 4794.
16. Fretz, H. WO 2006/021418; Chem. Abstr. 2006, 144, 274271.
17. Bennani, Y. L. WO 2006/034418; Chem. Abstr. 2006, 144, 350544.
18. Hynd, G. WO 2006/136859; Chem. Abstr. 2006, 146, 100556.
19. Crosignani, S.; Page, P.; Missotten, M.; Colovray, V.; Cleva, C.; Arrighi, J.-F.;
Atherall, J.; Macritchie, J.; Martin, T.; Humbert, Y.; Gaudet, M.; Pupowicz, D.;
Maio, M.; Pittet, P.-A.; Golzio, L.; Giachetti, C.; Rocha, C.; Bernardinelli, G.;
Filinchuk, Y.; Scheer, A.; Schwarz, M. K.; Chollet, A. J. Med. Chem. 2008, 51, 2227.
20. Kulp, S. S.; McGee, M. J. J. Org. Chem. 1983, 48, 4097.
Table 3
In vitro data of isoquinoline derivatives with R substitution modifications
O
H
N
N
R
O
Cl
a
Compound
R
hCRTH2 binding IC50 (nM)
∗
21. Kirmse, W. Eur. J. Org. Chem. 2002, 14, 2193.
22. Human CRTH2 transfectant KB8 cells (BML Co. Kawagoe, Japan) were
24
7.8
O
OH
∗
incubated with
1 lM Fluo-4 AM for 30 min at 37 °C in the dark. After
incubation, the cells were washed and suspended in HBSS containing 10 mM
HEPES, pH 7.3, 1 mM CaCl2 (2 Â 105cells/100
ll). The compound and 100 nM of
25
33
200
25
PGD2 were added, and the increase of intracellular Ca2+ concentration ([Ca2+]i)
was measured using the functional drug screening system FDSS6000
(Hamamatsu Photonics, Shizuoka, Japan). The IC50s of the representative
compounds (6b, 6g, 6k, 15, 19) were 42 nM, 550 nM, 15 nM, 17 nM, and
180 nM, respectively.
O
OH
O
∗
HO
23. Human Th2 cells were prepared as follows: the CD4+T lymphocytes separated
from PBMCs using anti-CD4 mAb were stimulated with anti-CD3 mAb and
O
anti-CD28 mAb in the presence of IL-4 and neutralizing anti-IFN
c mAb for
a
Mean values from at least two indepentent experiments. IC50 values were
determined from full 10-point, half-log concentration–response curves.
3 days and, then, expanded by IL-2 and IL-4 for 7 days. Th2 cells highly
expressing CRTH2 were separated with anti-CRTH2 mAb, and 2 days after the