480 Journal of Combinatorial Chemistry, 2010 Vol. 12, No. 4
Yang et al.
to lower yield of the final product 8b (Table 3, entry 2).
The reaction of compound 7 and ethanethiol with pyridine
as base yielded the desired product 8c (55%) and reduction
product 6c (37%) (Table 3, entry 3). The reaction of 7 with
benzyl mercaptan generated compound 8d in 87% yield
without reduction product 6c (Table 3, entry 4). Butan-1-ol
as the nucleophile yielded product 8e in good yield (Table
3, entry 7). The weak nucleophile phenol also gave the
desired product 8f (Table 3, entry 6). These reactions
demonstrated the feasibility of the proposed transformations
of phenylthio group to increase the structural diversity.
In an attempt to expand the scope of this reaction to other
olefins and alkynes, pyrimidines 3h and 3i were synthesized
as depicted in Scheme 3.17 However, neither 3h nor 3i
produced the desired products under the above reaction
conditions. In the reaction with aniline in refluxing CH3CN,
substrate 3h decomposed. Substrate 3i was recovered after
refluxing for 2 h with aniline in CH3CN. These results are
likely due to the lack of reactivity of the dienophiles and
consistent with those of the similar molecular systems
reported in the literature.18
Acknowledgment. This work was supported by Ph.D.
Programs Foundation of Ministry of Education of China
20070183038, National Key Research Program on Drug
Discovery Grants of China 2009ZX09501-010, and
Changchun Discovery Sciences, Ltd.
Supporting Information Available. Detailed experimen-
tal procedures and compound characterization data for all
products. This material is available free of charge via the
References and Notes
(1) For examples, see: (a) Nefzi, A.; Ostresh, J. M.; Houghten,
R. A. Chem. ReV. 1997, 97, 449–472. (b) Dolle, R. E.;
Bourdonnec, B. L.; Goodman, A. J.; Morales, G. A.; Thomas,
C. J.; Zhang, W. J. Comb. Chem. 2008, 10, 753–802. (c) Dolle,
R. E.; Bourdonnec, B. L.; Goodman, A. J.; Morales, G. A.;
Salvino, J. M.; Zhang, W. J. Comb. Chem. 2007, 9, 855–
902. (d) Dolle, R. E. J. Comb. Chem. 2005, 7, 739–798.
(2) (a) O’Yang, C.; Schoenfeld, R. C. U.S. Patent 7,307,082
(2007). (b) Huang, H.; Hutta, D. A.; Hu, H.; DesJarlais, R. L.;
Schubert, C.; Petrounia, I. P.; Chaikin, M. A.; Manthey, C. L.;
Player, M. R. Bioorg. Med. Chem. Lett. 2008, 18, 2355–2361.
(c) Trumpp-Kallmeyer, S.; Rubin, J. R.; Humblet, C.; Hamby, J. M.;
Showalter, H. D. H. J. Med. Chem. 1998, 41, 1752–1763.
(3) (a) Jaton, J.-C.; Roulin, K.; Rose, K.; Sirotnak, F. M.;
Lewenstein, A.; Brunner, G.; Fankhauser, C. P.; Burger, U.
J. Nat. Prod. 1997, 60, 356–360. (b) Morimoto, Y.; Matsuda,
F.; Shirahama, H. Tetrahedron 1996, 52, 10609–10630.
(4) (a) Wolf, M.; Diebold, J. L. U.S. Patent 3,647,800 (1972).
(b) Wolf, M.; Diebold, J. L. U.S. Patent 3,637,706 (1972).
(c) Wolf, M.; Diebold, J. L. U.S. Patent 3,674,790 (1972).
(5) (a) Wilton, J. H.; Cheney, D. C.; Hokanson, G. C.; French,
J. C.; Cun-heng, H.; Clardy, J. J. Org. Chem. 1985, 50, 3936–
3938. (b) Ku¨nzel, E.; Faust, B.; Oelkers, C.; Weissbach, U.;
Bearden, D. W.; Weitnauer, G.; Westrich, L.; Bechthold, A.;
Rohr, J. J. Am. Chem. Soc. 1999, 121, 11058–11062. (c)
Larsen, D. S.; O’Shea, M. D. J. Org. Chem. 1996, 61, 5681–
5683. (d) Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103–
137. (e) Ohmori, K.; Mori, K.; Ishikawa, Y.; Tsuruta, H.;
Kuwahara, S.; Harada, N.; Suzuki, K. Angew. Chem., Int. Ed.
2004, 43, 3167–3171.
Conclusion
In conclusion, a novel pyrimidine-fused tetracyclic scaffold
was designed and synthesized by a methodology involving
the intramolecular inverse electron demand hetero-Diels-Alder
reaction of an imine or iminium ion formed in situ from
N-allylaminopyrimidinealdehyde with suitable primary or
secondary aryl amines. The reactions yielded exclusively cis-
configured products in good to excellent yields and are simple
in operation. Further transformations of the phenylthio group
in this tetracyclic scaffold were demonstrated by an oxidation
and subsequent nucleophilic substitution sequence. This
method provides convenient access to a library of structurally
diversified compounds for drug discovery.
Experimental Section
(6) Kiselyov, A. S. Tetrahedron Lett. 2005, 46, 1177–1179.
(7) Boger, D. L.; Kochanny, M. J. J. Org. Chem. 1994, 59, 4950–
4955.
General Procedure for the Synthesis of Hexahydroben-
zo[b]pyrimido[4,5-h][1,6]naphthyridines 6. To a solution
of 3c (143 mg, 0.5 mmol) and aniline (0.048 mL, 0.525
mmol) in CH3CN (2 mL) and water (2 mL) was added a
solution of TFA (0.075 mL, 1.0 mmol). The reaction mixture
was stirred for 11 h at 25 °C. The precipitate was filtered
and washed with ethanol to give the desired product 6c. The
filtrate was diluted with 20 mL of water and extracted with
EtOAc (4 × 8 mL). The organic phase was washed with
brine, dried over anhydrous MgSO4, concentrated in vacuo,
and purified by flash chromatography to give the product
6c. The combined product weighed 169 mg (94% yield). 1H
NMR (CDCl3, δ): 8.28 (s, 1H), 7.56-7.52 (m, 2H),
7.43-7.39 (m, 3H), 7.06-7.00 (m, 2H), 6.68 (t, J ) 7.2
Hz, 1H), 6.51 (d, J ) 7.8 Hz, 1H), 4.75 (d, J ) 2.4 Hz,
1H), 3.92 (s, 1H), 3.56 (t, J ) 12.3 Hz, 1H), 3.30 (dd, J1 )
6.3 Hz, J2 ) 17.1 Hz, 1H), 3.16 (s, 3H), 3.12 (dd, J1 ) 4.8
Hz, J2 ) 12.6 Hz, 1H), 2.62 (d, J ) 17.1 Hz, 1H), 2.47 (m,
1H); 13C NMR (CDCl3, δ): 162.88, 157.66, 157.27, 141.53,
134.84, 129.73, 129.35, 128.99, 127.62, 118.24, 118.12,
114.76, 111.32, 90.60, 49.65, 47.52, 36.30, 29.24, 28.77; MS
(ESI): m/z 361.1 [M + H+].
(8) (a) Yang, J.; Che, X.; Dang, Q.; Wei, Z.; Gao, S.; Bai, X.
Org. Lett. 2005, 7, 1541–1543. (b) Fu, R.; Xu, X.; Dang, Q.;
Bai, X. J. Org. Chem. 2005, 70, 10810–10816. (c) Zheng,
L.; Xiang, J.; Dang, Q.; Guo, S.; Bai, X. J. Comb. Chem.
2005, 7, 813–815. (d) Liu, J.; Dang, Q.; Wei, Z.; Zhang, H.;
Bai, X. J. Comb. Chem. 2005, 7, 627–636. (e) Yang, J.; Dang,
Q.; Liu, J.; Wei, Z.; Wu, J.; Bai, X. J. Comb. Chem. 2005, 7,
474–482. (f) Che, X.; Zheng, L.; Dang, Q.; Bai, X. Tetrahe-
dron 2006, 62, 2563–2568. (g) Xiang, J.; Zheng, L.; Chen,
F.; Dang, Q.; Bai, X. Org. Lett. 2007, 9, 765–767. (h) Zheng,
L.; Yang, F.; Dang, Q.; Bai, X. Org. Lett. 2008, 10, 889–
892. (i) Che, X.; Zheng, L.; Dang, Q.; Bai, X. J. Org. Chem.
2008, 73, 1147–1149.
(9) Reviews: (a) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder
Methodology in Organic Synthesis; Academic: Orlando, 1987;
Chapters 2 and 9. . (b) Kouznetsov, V. V. Tetrahedron 2009,
65, 2721–2750. (c) Povarov, L. S. Russ. Chem. ReV. 1967,
36, 656–670. (d) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahe-
dron. 2001, 57, 6099–6138.
(10) (a) Stevenson, G. I.; Leeson, P. D.; Rowley, M.; Sanderson,
I.; Stansfield, I. Bioorg. Med. Chem. Lett. 1992, 2, 371–374.
(b) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc.
2006, 128, 13070–13071. (c) Zhang, W.; Guo, Y.; Liu, Z.;
Jin, X.; Yang, L.; Liu, Z.-L. Tetrahedron 2005, 61, 1325–