4526
D. W. Lupton, D. K. Taylor / Tetrahedron 58!2002) 4517±4527
prepared using this methodology. 10i10b,c was prepared from
oxirane 11i in an identical fashion.
<CDCl3) d 28.02, 43.47, 126.91, 128.66, 129.03, 129.63,
133.72, 138.46; MS m/z <%): 230 <M1 37Cl, 2%), 228
<M1 35Cl, 8), 195 <50), 164 <35), 129 <100); HRMS of
<14c), C10H9S2Cl: calcd, 227.9868, found, 227.9837.
5.1.7. 2-[(E)-2-Phenyl-1-ethenyl]-3-vinylthiirane (10h).
The title compound was prepared as a colourless oil from
oxirane 11h using the approach for thiirane 10a. Rf 0.31
<10% dichloromethane/hexane); IR 1634, 1597, 1491
5.1.11. 3-Methyl-6-phenyl-3,6-dihydro-1,2-dithiine (14d).
The title compound was prepared as a colourless oil from
10e or 10f using the approach for the synthesis of 14a. IR
1644, 1597, 1489 cm21; 1H NMR <CDCl3, 600 MHz) d 1.5
<d, J7.2 Hz, 3H), 3.42 <m, 1H), 4.58 <m, 1H), 5.95 <ddd,
J1.9, 3.2, 11.6 Hz, 1H), 6.02 <ddd, J2.2, 4.3, 11.6 Hz,
1H), 7.37±7.27 <m, 5H); 13C NMR <CDCl3) d 20.90, 34.68,
44.37, 127.85, 128.28, 128.53, 128.92, 133.12, 139.86; MS
m/z <%): 208 <M1, 5), 164 <7), 144 <70), 129 <100); HRMS
of <14d), C11H12S2: calcd, 208.0414; found, 208.0379.
1
cm21; <cis 10h); H NMR <CDCl3, 600 MHz) d 3.71 <dd,
J6.9, 8.8 Hz, 1H), 3.83 <dd, J6.9, 9.3 Hz, 1H), 5.54 <m,
3H), 6.01 <dd, J9.3, 15.5 Hz, 1H), 6.78 <d, J15.5 Hz,
1
1H), 7.39±7.21 <m, 5H); <trans 10h); H NMR <CDCl3,
600 MHz) d 3.43 <dd, J5.0, 8.4 Hz, 1H), 3.51 <dd, J
5.0, 8.9 Hz, 1H), 5.54 <m, 3H), 5.81 <dd, J9.1, 15.7 Hz,
1H), 6.74 <d, J15.7 Hz, 1H), 7.39±7.21 <m, 5H); 13C NMR
<CDCl3) d 42.55, 42.78, 43.78, 44.05, 117.68, 119.48,
125.78, 126.10, 126.17, 126.40, 127.67, 128.17, 128.46,
128.85, 132.68, 132.87, 134.41, 136.15, 136.27, 137.47;
MS m/z <%): 188 <M1, 30), 173 <20), 156 <75), 155 <100);
HRMS of <10h), C12H12S: calcd, 188.0677; found,
188.0665.
5.1.12. Preparation of 3-phenyl-6-vinyl-3,6-dihydro-1,2-
dithiine (14e) and 3-[(E)-2-phenyl-1-ethenyl]-3,6-di-
hydro-1,2-dithiine (14f). The title compounds were
prepared as colourless oils from 10h using the approach
for the synthesis of 14a. Rf0.31 <2% ethyl acetate/hexane);
1H NMR <CDCl3, 600 MHz) d 3.86 <m, 1H), 4.70 <q, J1.8,
1H), 5.29 <ddt, J0.6, 1.2, 10.2 Hz, 1H), 5.32 <dt, J1.2,
17.4 Hz, 1H), 6.01 <ddd, J1.8, 4.8, 11.4 Hz, 1H), 6.12±
6.06 <m, 2H), 7.39±7.25 <m, 5H); 13C NMR <CDCl3) d
27.78, 38.00, 40.88, 45.00, 117.48, 125.69, 126.13,
127.46, 128.09, 128.34, 128.48, 128.63, 128.69, 128.72,
129.14, 129.63, 130.78, 131.70, 135.83, 139.26; MS m/z
<%): 220 <M1, 10), 187 <40), 156 <100); HRMS of <14e),
C12H12S2: calcd, 220.0414, found, 220.0378.
5.1.8. 3-Phenyl-3,6-dihydro-1,2-dithiine (14a). A typical
procedure for the synthesis of 1,2-dithiins (14a±f). Either
vinylthiirane 10a or 10g <0.66 g, 4.07 mmol) and tungsten
pentacarbonyl monoacetonitrile <15 mg, 0.06 mmol) in
deuterated chloroform <0.5 ml) were shaken in an NMR
tube and allowed to react over 24 h after which time all
starting material had been consumed. The reaction mixture
was then concentrated in vacuo and separated by ¯ash
chromatography <5% ethyl acetate/hexane) to afford pure
1,2-dithiin as a colourless oil. Refer to Table 3 for yields
and reaction times for 1,2-dithiins prepared using this
1
14f: Rf 0.35 <2% ethyl acetate/hexane); H NMR <CDCl3,
methodology. Rf 0.45; IR 1641, 1597, 1492, 1451 cm21
;
600 MHz) d 3.14 <ddt, J2.4, 4.2, 18.0 Hz, 1H), 3.33 <ddt,
J2.4, 4.2, 15.6 Hz, 1H), 4.05 <m, 1H), 5.92 <ddt, J2.4,
4.2, 12.0 Hz, 1H), 6.07 <m, 1H), 6.29 <dd, J7.8, 15.6 Hz,
1H), 6.55 <d, J15.6 Hz, 1H), 7.39±7.21 <m, 5H); 13C NMR
<CDCl3) d 27.86, 28.91, 41.13, 48.41, 126.19, 126.33,
126.81, 127.03, 127.13, 127.56, 128.16, 128.22, 128.34,
132.65, 133.85, 135.21, 136.36, 140.45; MS m/z <%) 219
<M1, 4), 187 <30), 156 <100); HRMS of <14f), C11H12S2:
calcd, 220.0414, found, 220.0381.
1H NMR <CDCl3, 600 MHz) d 3.22 <ddt, J2.2, 4.8,
17.4 Hz, 1H), 3.47 <ddt, J2.2, 3.8, 17.4 Hz, 1H), 4.67 <p,
J2.2 Hz, 1H), 6.04 <ddt, J2.2, 3.8, 11.7 Hz, 1H), 6.17
<dddd, J2.2, 3.8, 4.8, 11.7 Hz, 1H), 7.39±7.28 <m, 5H);
13C NMR <CDCl3) d 27.97, 44.44, 126.45, 127.85, 128.28,
128.50, 129.61, 139.77; MS m/z <%), 194 <M1, 10), 33 <8),
130 <100), 115 <45); HRMS of <14a), C10H10S2: calcd,
194.0258; found, 194.0225.
5.1.9. 3-(4-Methoxyphenyl)-3,6-dihydro-1,2-dithiine (14b).
The title compound was prepared as a colourless oil from
10b using the approach for the synthesis of 14a. Rf 0.35 <3%
ethyl acetate/hexane); IR 1643, 1609, 1510 cm21; 1H NMR
<CDCl3, 600 MHz) d 3.18 <ddt, J2.4, 4.8, 17.4 Hz, 1H),
3.47 <ddt, J2.4, 3.6, 17.4 Hz, 1H), 3.79 <s, 3H), 4.65 <p,
J2.4 Hz, 1H), 6.01 <ddt, J2.4, 3.6, 11.4 Hz, 1H), 6.14
<dddd, J2.4, 3.6, 4.8, 11.4 Hz, 1H), 7.17±7.10 <m, 2H),
7.31±7.20 <m, 2H); 13C NMR <CDCl3) d 28.00, 44.03,
55.29, 114.01, 129.48, 126.36, 130.07, 131.81, 159.37;
MS m/z <%): 224 <M1, 10), 191 <67), 160 <100); HRMS
of <14b), C11H12S2O: calcd, 224.0363; found, 224.0333.
5.2. General procedure for kinetic studies
Thiirane 10a <93 mg, 0.573 mmol) and hexamethylbenzene
<13 mg, 8.02 mmol) in CDCl3 <0.7 ml) were mixed in a
5 mm NMR tube and an initial H NMR spectra taken.
1
Tungsten pentacarbonyl acetonitrile <5.5 mg, 15 mmol)
was then added and the solution shaken. Spectra were
then obtained periodically <4£15, 8£30 min then 6£60
min) on a Varian-Gemini-200 instrument utilising the
preacquisition delay <PAD) function. The reaction rate
was determined by comparing the area of the thiirane
doublet at d 4.2 ppm and the doublet of doublets at d 3.52
to the area of the hexamethyl benzene signal.
5.1.10. 3-(4-Chlorophenyl)-3,6-dihydro-1,2-dithiine (14c).
The title compound was prepared as a colourless oil from
10c using the approach for the synthesis of 14a. Rf0.35
<7.5% dichloromethane/hexane); IR 1648, 1593, 1489
1
cm21; H NMR <CDCl3, 600 MHz) d 3.26 <ddt, 2.2, 4.2,
Acknowledgements
17.6 Hz, 1H), 3.40 <ddt, J2.2, 4.2, 17.6 Hz, 1H), 4.59
<m, 1H), 5.98 <ddt, J2.2, 3.7, 11.7 Hz, 1H), 6.18 <ddt,
J2.2, 4.2, 11.7 Hz, 1H), 7.32±7.25 <m, 4H); 13C NMR
This work was supported by the Australian Research
Council.