M. Shao, Y. Zhao / Tetrahedron Letters 51 (2010) 2892–2895
2895
of Ag+ to 2 and 3, respectively, did not cause any significant
changes in the redox features of TTFAQ, thus ruling out the possi-
bility of significant interactions between Ag+ and S atoms in 3. On
the other hand, the anodic peak at ca. +0.58 V due to Ag+ was ob-
served to move anodically with increasing titration, the exact rea-
son for such shift is unclear and awaits further exploration.
In conclusion, two new D/A-substituted TTFAQ derivatives 2 and 3
were prepared and added to the family of TTFAQ-cored D/A triads.
Availability of these compounds has allowed for a systematic exami-
nation of the D/A substitution effects on the electronic spectroscopic
properties of TTFAQ through acetylenic conjugation. Electrochemical
titration experiments on TTFAQ derivatives 2 and 3 with selected me-
tal ions have demonstrated good sensing selectivity for Cu2+ ions.
Application of such D/A TTFAQ triads as electrochemical sensors for
other transition metal ions (e.g., Pb2+, Cd2+, Hg2+, Zn2+, etc.) is under
investigation and will be reported in due course.
3. (a) Illescas, B. M.; Santos, J.; Wieloposki, M.; Atienza, C. M.; Martín, N.; Guldi, D.
M. Chem. Commun. 2009, 5374–5376; (b) Kodis, G.; Liddell, P. A.; de la Garza, L.;
Moore, A. L.; Moore, T. A.; Gust, D. J. Mater. Chem. 2002, 12, 2100–2108.
4. Gayathri, S. S.; Wielopolski, M.; Pérez, E. M.; Fernández, G.; Sánchez, L.; Viruela,
R.; Ortí, E.; Guldi, D. M.; Martín, N. Angew. Chem., Int. Ed. 2009, 48, 815–819.
5. (a) Molina-Ontoria, A.; Fernández, G.; Wielopolski, M.; Atienza, C.; Sánchez, L.;
Gouloumis, A.; Clark, T.; Martín, N.; Guldi, D. M. J. Am. Chem. Soc. 2009, 131,
12218–12229; (b) Wielopolski, M.; Atienza, C.; Clark, T.; Guldi, D. M.; Martín,
N. Chem. Eur. J. 2008, 14, 6379–6390; (c) Atienza-Castellanos, C.; Wielopolski,
M.; Guldi, D. M.; van der Pol, C.; Bryce, M. R.; Filippone, S.; Martín, N. Chem.
Commun. 2007, 5164–5166; (d) Giacalone, F.; Segura, J. L.; Martín, N.; Ramey, J.;
Guldi, D. M. Chem. Eur. J. 2005, 11, 4819–4834.
6. Otero, M.; Herranz, M. A.; Seonane, C.; Martín, N.; Carín, J.; Orduna, J.; Alcalá, R.;
Villacampa, B. Tetrahedron 2002, 58, 7463–7475.
7. (a) Díaz, M. C.; Illescas, B. M.; Seonane, C.; Martín, N. J. Org. Chem. 2004, 69,
4492–4499; (b) Perepichka, D. F.; Bryce, M. R.; Perepichka, I. F.; Lyubchik, S. B.;
Christensen, C. A.; Godbert, N.; Batsanov, A. S.; Levillain, E.; McInnes, E. J. L.;
Zhao, J. P. J. Am. Chem. Soc. 2002, 124, 14227–14238; (c) Chen, G.; Shao, M.;
Zhao, Y. Asian Chem. Lett. 2007, 11, 185–196; (d) Shao, M.; Chen, G.; Zhao, Y.
Synlett 2008, 371–376.
8. (a) Gómez, R.; Coya, C.; Segura, J. L. Tetrahedron Lett. 2008, 3225–3228; (b)
Godbert, N.; Bryce, M. R. J. Mater. Chem. 2002, 12, 27–36.
9. Chen, G.; Zhao, Y. Tetrahedron Lett. 2006, 47, 5069–5073.
Acknowledgments
10. (a) Beer, P. D.; Gale, P. A.; Chen, G. Z. J. Chem. Soc., Dalton Trans. 1999, 1897–
1910; (b) Beer, P. D.; Gale, P. A.; Chen, G. Z. Coord. Chem. Rev. 1999, 185–186, 3–
36; (c) Beer, P. D.; Hayes, E. J. Coord. Chem. Rev. 2003, 240, 167–189; (d) Bakker,
E.; Telting-Diaz, M. Anal. Chem. 2002, 74, 2781–2800.
11. Canevet, D.; Sallé, M.; Zhang, G.; Zhang, D.; Zhu, D. Chem. Commun. 2009,
2245–2269.
The authors thank NSERC, CFI, IRIF, and Memorial University for
financial support.
12. Characterization data for compound 2: An orange solid. Mp: 250–252 °C; IR
Supplementary data
(neat): 2918, 2852, 2197, 1609, 1593 cmꢀ1 1H NMR (500 MHz, CDCl3): d 7.64
;
(s, 4H), 7.51 (d, J = 7.9 Hz, 2H), 7.46–7.41 (m, 6H), 6.69 (d, J = 7.9 Hz, 4H), 3.00
(s, 12H), 2.41 (s, 12H); HSQC data see Supplementary data; HRMS (MALDI-TOF,
m/z) calcd for C44H38N2S8: 850.0801 [M]+, found: 850.0869.
Supplementary data associated with this article can be found, in
13. Characterization data for compound 3: an orange solid. Mp: 135–136 °C; IR
;
(neat): 2948, 2920, 2205, 1724, 1605, 1527 cmꢀ1 1H NMR (500 MHz,
References and notes
CDCl3): d 8.04 (d, J = 8.4 Hz, 4H), 7.69 (d, J = 1.3 Hz, 2H), 7.63 (d, J = 8.4 Hz,
4H), 7.55 (d, J = 8.4 Hz, 2H), 7.48 (dd, J = 8.0, 1.5 Hz, 2H), 3.94 (s, 6H), 2.42
(s, 12H); 13C NMR (125 MHz, CDCl3): d 166.5, 134.8, 134.6, 131.6, 129.8,
129.58, 129.55, 128.2, 127.9, 126.7, 125.8, 125.5, 122.1, 120.7, 92.3, 89.5,
52.5, 19.42, 19.25 (one signal not observed due to coincidental overlap);
HRMS (MALDI-TOF, m/z) calcd for C44H32O4S8: 880.0066 [M]+, found:
880.0057.
1. (a)TTF Chemistry: Fundamental and Applications of Tetrathiafulvalene; Yamada, J.-
I., Sugimoto, T., Eds.; Springer: Heidelberg, 2004; (b) Bendikov, M.; Wudl, F.;
Perepichka, D. F. Chem. Rev. 2004, 104, 4891–4945; (c) Segura, J. L.; Martín, N.
Angew. Chem., Int. Ed. 2001, 40, 1372–1409.
2. (a) Bryce, M. R.; Moore, A. J. Synth. Met. 1988, 27, 557–561; (b) Yamashita, Y.;
Kobayashi, Y.; Miyashi, T. Angew. Chem., Int. Ed. Engl. 1989, 28, 1052–1053.
14. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165–195.