II receptor,12 and the ꢀ3-adrenergic receptor.13 They are also
used as potent PDE4 inhibitors14 and GABAA receptor
ligands.15 In addition, 2-imidazolones can be transferred into
imidazoles that display wide biological and pharmaceutical
activity.16 Herein, we are interested in preparation of
4-arylidene-2-alkyl-4,5-dihydro-1H-imidazol-5-ones (2,4-di-
substituted imidazolones) considering their wide applications
in life science and medicinal chemistry. Only several
approaches to 2,4-disubstituted imidazolones were reported
until now,7,17,18 and the protocols used reactions of oxazo-
lones with amines17,18a or ammonia18b and coupling of
imidates with amino acid esters.18c Recently, there has been
great progress in copper-catalyzed N-arylations,19 and the
N-arylation strategy has been used to make N-heterocycles.20
We have also developed some efficient methods for copper-
catalyzed cross couplings21 and synthesis of N-heterocy-
cles.22 In this communication, we report a simple and
efficient copper-catalyzed synthesis of 4-arylidene-2-alkyl-
4,5-dihydro-1H-imidazol-5-ones (2,4-disubstituted imidazo-
lones) without addition of any ligand or additive under mild
conditions.
(11) Carling, R. W.; Moore, K. W.; Moyes, C. R.; Jones, E. A.; Bonner,
K.; Emms, F.; Marwood, R.; Patel, S.; Fletcher, A. E.; Beer, M.; Sohal, B.;
Figure 1. 2,4-Disubstituted imidazolone motif occurring in the
natural products and the fluorescent proteins.
Pike, A.; Leeson, P. D. J. Med. Chem. 1999, 42, 2706
.
(12) Reitz, D. B.; Garland, D. J.; Norton, M. B.; Collins, J. T.; Reinhard,
E. J.; Manning, R. E.; Olins, G. M.; Chen, S. T.; Palomo, M. A.; McMahon,
E. G. Bioorg. Med. Chem. Lett. 1993, 3, 1055
.
(13) Naylor, E. M.; Parmee, E. R.; Colandrea, V. J.; Perkins, L.;
Brockunier, L.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F.; Deng,
L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Starader,
C. D.; Tota, L.; Wang, P.-R.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E.
Table 1. Copper-Catalyzed Cascade Synthesis of
(Z)-4-Benzylidene-2-methyl-4,5-dihydro-1H-imidazol-5-one (3a)
via Coupling of 2-Bromo-3-phenylacrylic Acid (1a) with
Acetamidine Hydrogen Chloride (2a): Optimization of
Conditionsa
Bioorg. Med. Chem. Lett. 1999, 9, 755
.
(14) Andre´s, J. I.; Alonso, J. M.; Diaz, A.; Fernandez, J.; Iturrino, L.;
Martinez, P.; Matesanz, E.; Freyne, E. J.; Deroose, F.; Boeckx, G.; Petit,
D.; Diels, G.; Megens, A.; Somers, M.; Wauwe, J. V.; Stoppie, P.; Cools,
M.; Clerck, F. D.; Peeters, D.; Chaffoy, D. D. Bioorg. Med. Chem. Lett.
2002, 12, 653
.
(15) DeSimone, R. W.; Blum, C. A. Bioorg. Med. Chem. Lett. 2000,
10, 2723
.
(16) (a) Lee, S.-H.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch,
G.; Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829. (b)
Plummer, C. W.; Finke, P. E.; Mills, S. G.; Wang, J.; Tong, X.; Doss,
G. A.; Fong, T. M.; Lao, J. Z.; Schaeffer, M.-T.; Chen, J.; Shen, C.-P.;
Stribling, D. S.; Shearman, L. P.; Strack, A. M.; Van der Ploeg, L. H. T.
temp
(°C)
yield
(%)b
entry
cat.
CuI
CuBr
CuCl
Cu2O
CuO
base
solvent
Bioorg. Med. Chem. Lett. 2005, 15, 1441
.
(17) He, X.; Bell, A. F.; Tonge, P. J. Org. Lett. 2002, 4, 1523
.
1
2
3
4
5
6
7
8
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
K2CO3
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMSO
dioxane
NMP
DMF
DMF
80
80
80
80
80
80
80
80
80
80
80
80
80
r.t.
60
35
27
32
53
15
26
(18) (a) Wu, L.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089. (b)
Fozooni, S.; Tikdari, A. M. Catal. Lett. 2008, 120, 303. (c) Janosik, T.;
Johnson, A.-L.; Bergman, J. Tetrahedron 2002, 58, 2813
.
(19) For recent reviews on copper-catalyzed cross couplings, see: (a)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2001, 123, 7727. (b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (c)
Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (d) Ley, S. V.; Thomas,
A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (e) Beletskaya, I. P.;
Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337. (f) Evano, G.;
Blanchard, N.; Toumi, M. Chem. ReV. 2008, 108, 3054. (g) Monnier, F.;
Taillefer, M. Angew. Chem., Int. Ed 2009, 48, 6954, and references cited
therein.
Cu(OAc)2
-
tracec
37
43
trace
40
0
28
Cu2O
Cu2O
Cu2O
Cu2O
Cu2O
Cu2O
Cu2O
Cu2O
9
Na2CO3
K3PO4
10
11
12
13
14
15
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
(20) For recent studies on the synthesis of N-heterocycles through
Ullmann-type couplings, see: (a) Martin, R.; Rivero, M. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2006, 45, 7079. (b) Evindar, G.; Batey, R. A. J.
Org. Chem. 2006, 71, 1802. (c) Bonnaterre, F.; Bois-Choussy, M.; Zhu, J.
Org. Lett. 2006, 8, 4351. (d) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem.,
Int. Ed. 2007, 46, 2598. (e) Chen, Y.; Xie, X.; Ma, D. J. Org. Chem. 2007,
72, 9329. (f) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org.
Chem. 2007, 72, 1510. (g) Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D.
Org. Lett. 2008, 10, 2761. (h) Altenhoff, G.; Glorius, F. AdV. Synth. Catal.
2004, 346, 1661.
0
trace
a Reaction conditions: 2-bromo-3-phenylacrylic acid (1a) (0.7 mmol),
acetamidine hydrogen chloride (2a) (0.5 mmol), catalyst (0.1 mmol), base
(1 mmol), and solvent (2 mL) under nitrogen atmosphere. b Isolated yield.
c In the absence of copper catalyst.
(21) (a) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2005, 70,
8107. (b) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.sEur. J. 2006,
12, 3636. (c) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2007,
72, 672. (d) Jiang, Q.; Jiang, D.; Jiang, Y.; Fu, H.; Zhao, Y. Synlett 2007,
72, 1836. (e) Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. AdV. Synth.
Catal. 2006, 348, 2197. (f) Zeng, L.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y.
AdV. Synth. Catal. 2009, 351, 1671. (g) Gao, X.; Fu, H.; Qiao, R.; Jiang,
Y.; Zhao, Y. J. Org. Chem. 2008, 73, 6864. (h) Yang, D.; Fu, H.
Chem.sEur. J. 2010, 16, 2366.
2-Bromo-3-phenylacrylic acid (1a) and acetamidine hy-
drogen chloride (2a) were first used as the model substrates
to optimize reaction conditions including optimization of the
catalysts, bases, solvents, and temperature under nitrogen
Org. Lett., Vol. 12, No. 14, 2010
3129