Treatment of 1a with Et3SiH (2, 5 equiv) in the presence of
Ni(cod)2 (10 mol %) and PPh3 (20 mol %) in THF at room
temperature provided the bicyclo[3.3.0]octane derivative in 44%
yield as a single isomer. The regiochemistry of the alkene part
in 4a was determined to be the E configuration by a NOESY
experiment. Furthermore, the product 4a was transformed into
the bicyclic compound 5, whose 1H and 13C NMR spectral data
were identical to those reported previously.11,12 Therefore, the
stereochemistry of the ring junction of 4a was assigned to
be the syn-orientation.
Scheme 1
Scheme 2
catalyzed reductive coupling between alkynes and ketones
has been limited to a few cases: coupling of 1,3-enynes and
aromatic ketones or R,ꢀ-unsaturated ketone6 or coupling
reaction of alkynes and cyclobutanones.7 In this context, we
planned nickel-catalyzed cyclization of alkynlcycloalkanone
in the presence of silane as a new method for the construction
of polycyclic skeletons (Scheme 1). That is, oxidative
cycloaddition of a carbonyl group and alkyne part to a
zerovalent nickel complex could proceed to give oxanick-
elacycle 3.8,9 The reaction of nickelacycle 3 with silane
would afford bicyclic compound 4 including an allylic
alcohol part at the bridgehead carbon, which might be used
for further transformations.10
Encouraged by these results, we investigated the cycliza-
tion using various ligands to improve the yield of 4a. The
results are summarized in Table 1. The reaction of 1a and 2
using PBu3 as a ligand gave 4a in 72% yield (run 1). After
screening various types of ligands, we found that N-
heterocyclic carbene (NHC) ligands were effective for
cyclization of 1a in the presence of Et3SiH (2) (runs 2-5).
Among the NHC ligands employed, IPr [1,3-bis(2,6-diiso-
propylphenyl)imidazol-2-ylidene] gave the best result. That
is, when IPr was used as a ligand, the reaction proceeded
smoothly to give 4a in quantitative yield (run 4).
To examine the feasibility of this plan, we investigated the
cyclization of 2-(pent-3-ynyl)cyclopentanone 1a (Scheme 2).
(5) For recent reviews, see: (a) Ikeda, S.-i. In Modern Organonickel
Chemistry; Tamaru, Y., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, 2005; pp 102-106. (b) Montgomery, J. Angew. Chem., Int. Ed.
2004, 43, 3890, and references cited therein. (c) Moslin, R. M.; Miller-
Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441, and references
cited therein. For recent reports on Ni(0)-catalyzed reductive coupling of
alkynes and aldehydes, see: (d) Knapp-Reed, B.; Mahandru, G. M.;
Montgomery, J. J. Am. Chem. Soc. 2005, 127, 13156. (e) Luanphaisarnnont,
T.; Ndubaku, C. O.; Jamison, T. F. Org. Lett. 2005, 7, 2937. (f) Miller,
K. M.; Colby, E. A.; Woodin, K. S.; Jamison, T. F. AdV. Synth. Catal.
2005, 347, 1533. (g) Moslin, R. M.; Jamison, T. F. Org. Lett. 2006, 8, 455.
(h) Sa-ei, K.; Montgomery, J. Org. Lett. 2006, 8, 4441. (i) Moslin, R. M.;
Miller, K. M.; Jamison, T. F. Tetrahedron 2006, 62, 7598. (j) Chaulagain,
M. R.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc. 2007, 129,
9568. (k) Moslin, R. M.; Jamison, T. F. J. Org. Chem. 2007, 72, 9736. (l)
Chrovian, C. C.; Knapp-Reed, B.; Montgomery, J. Org. Lett. 2008, 10,
811. (m) Saito, N.; Katayama, T.; Sato, Y. Org. Lett. 2008, 10, 3829. (n)
Malik, H. A.; Chaulagain, M. R.; Montgomery, J. Org. Lett. 2009, 11, 5734.
(o) Sa-ei, K.; Montgomery, J. Tetrahedron 2009, 65, 6707. (p) Malik, H. A.;
Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc. 2010, 132, 6304.
(6) Miller, K. M.; Jamison, T. F. Org. Lett. 2005, 7, 3077.
Table 1. Effect of Ligand
(7) (a) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005,
127, 6932. (b) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc.
2006, 128, 2166. (c) Murakami, M.; Ashida, S.; Matsuda, T. Tetrahedron.
2006, 62, 7540. (d) Murakami, M.; Ashida, S. Bull. Chem. Soc. Jpn. 2008,
81, 885.
(8) For the isolation of oxanickelacyclopentene from alkyne and
aldehyde, see: Ogoshi, S.; Arai, T.; Ohashi, M.; Kurosawa, H. Chem.
Commun. 2008, 1347
.
(9) For computational studies on the mechanism of Ni(0)-catalyzed
reductive coupling of alkyne and aldehyde, see: (a) McCarren, P. R.; Liu,
P.; Cheong, P. H.-Y.; Jamison, T. F.; Houk, K. N. J. Am. Chem. Soc. 2009,
131, 6654. (b) Liu, P.; McCarren, P.; Cheong, P. H.-Y.; Jamison, T. F.;
run
ligand
PBu3
IMes·HCl
SIMes·HBF4
IPr·HCl
time (h)
yield (%)
1a
2
3
4
5
48
8
9
1
1
72
84
79
quant
93
Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2050
.
(10) Jamison reported one example of Ni(0)-catalyzed reductive cy-
clization of a ketone and an alkyne in their synthetic study of (-)-terpestacin
and related molecules. When an alkynal including a cyclopentanone moiety
was treated with a Ni(0)-PBu3 catalyst and Et3B, the intramolecular cyclization
of the alkyne and the cyclopentanone part proceeded unexpectedly as a side
reaction to give the corresponding cyclized product. See: Chan, J.; Jamison,
T. F. J. Am. Chem. Soc. 2004, 126, 10682.
SIPr·HCl
a The reaction was carried out in the presence of 20 mol % of phosphine
t
ligand without BuOK.
Org. Lett., Vol. 12, No. 15, 2010
3495