Organic Letters
Letter
Iminopropargyl acetate (8a) was treated with 1d to produce
the desired pyrrole 9ad (52%). When R1, R2, and R3 were n-Bu,
H, and Me, respectively, the tandem reactions proceeded
smoothly, affording pyrroles 9ca, 9cb, and 9cd in good yields. In
the case of propargyl acetate 8b derived from glyoxal, pyrrole
9bd was produced in 31% yield due to the instability of the
substrate. In the reaction with 1f, propargyl acetate 8e having n-
butyl, methyl, and phenyl groups was smoothly converted to the
desired pyrrole 9ef in 81% yield. Exposure of propargyl acetates
8f to 1c and 1e led to the formation of 9fc (82%) and 9fe (94%).
Sterically hindered tert-butyl-substituted propargyl acetate 8h
was reacted with 1b, producing 9hb in 63% yield. Imino
propargyl acetate (8i) was smoothly engaged in a tandem
reaction with 1a and 1e to give the corresponding pyrroles 9ia
(83%) and 9ie (92%).
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
†T.R. and D.E. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea (NRF, 2011-0018355).
■
A plausible mechanism for the tandem Pd-catalyzed propargyl
substitution and cycloisomerization reactions of propargyl
acetates (5 and 8) bearing acyl and imidoyl groups is described
in Scheme 5. First, the σ-propargyl palladium(II) complex A is
DEDICATION
■
This paper is dedicated to Professor Jaiwook Park (POSTECH)
on the occasion of his 60th birthday.
Scheme 5. Plausible Mechanism
REFERENCES
■
(1) (a) Dean, F. M. In Comprehensive Heterocyclic Chemistry; Bird, C.
W., Cheeseman, G. W. H., Eds.; Pergamon Press: New York, 1984; Vol.
4, Part 3, p 599. (b) Donnelly, D. M. X.; Meegan, M. J. In
Comprehensive Heterocyclic Chemistry; Bird, C. W., Cheeseman, G. W.
H., Eds.; Pergamon Press: New York, 1984; Vol. 4, Part 3, p 657.
(2) (a) Jones, R. A. Pyrroles, Part II, The Synthesis, Reactivity and
Physical Properties of Substituted Pyrroles; Wiley: New York, 1992.
(b) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II;
Kartritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1996; Vol. 2,
p 119.
(3) Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. Rev. 1991, 20,
391.
(4) (a) Minetto, G.; Raveglia, L. F.; Taddei, M. Org. Lett. 2004, 6, 389.
(b) Trautwein, A. W.; Suβmuth, R. D.; Jung, G. Bioorg. Med. Chem. Lett.
̈
1998, 8, 2381. (c) Tamaso, K.; Hatamoto, Y.; Obora, Y.; Sakaguchi, S.;
initially generated from propargyl acetate in the presence of Pd
catalyst. Then an equilibrium occurs between A and σ-allenyl
palladium complex B. The equilibrium lies favorably toward the
σ-allenyl palladium(II) complex B due to steric congestion.
Transmetalation followed by reductive elimination delivers
allenyl sulfide 10. Complexation of 10 with copper activates the
allene bond via coordination between the imine or carbonyl
group and copper. Afterward, we assumed that the subsequent
attack of a sulfur atom at the electrophilic center carbon of allene
would give thiirenium intermediate E.10 Finally, intramolecular
ring-opening reaction followed by decomplexation of copper
produces the furans and pyrroles 6 and 9.
In summary, a Pd-catalyzed propargyl substitution reaction of
propargyl acetates with indium organothiolates is developed for
the synthesis of multisubstituted allenyl sulfides. This procedure
can be successfully applied to tandem Pd-catalyzed propargyl
substitution and cycloisomerization reactions from indium
organothiolates and propargyl acetates bearing acyl and imidoyl
groups for the synthesis of multisubstituted furans and pyrroles
in one pot.
Ishii, Y. J. Org. Chem. 2007, 72, 8820.
(5) (a) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 121.
(b) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(c) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(d) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199. (e) Zeni, G.;
Larock, R. C. Chem. Rev. 2004, 104, 2285.
(6) (a) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel’i, A.
V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440. (b) Kim, J. T.;
Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98.
(c) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005,
127, 10500. (d) Xia, Y.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. J. Am.
Chem. Soc. 2008, 130, 6940. (e) Marshall, J. A.; Bartley, G. S. J. Org.
Chem. 1994, 59, 7169. (f) Marshall, J. A.; Sehon, C. A. J. Org. Chem.
1995, 60, 5966. (g) Hashmi, A. S. K. Angew. Chem., Int. Ed. Engl. 1995,
34, 1581. (h) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M.
Angew. Chem., Int. Ed. 2000, 39, 2285.
(7) (a) Lee, J.-Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413. (b) Lee, P.
H.; Park, Y.; Park, S.; Lee, E.; Kim, S. J. Org. Chem. 2011, 76, 760.
(c) Mo, J.; Eom, D.; Kim, S. H.; Lee, P. H. Chem. Lett. 2011, 40, 980.
(8) Riveiros, R.; Rodriguez, D.; Sestelo, J. P.; Sarandeses, L. A. Org.
Lett. 2006, 8, 1403.
(9) (a) Pilcher, G.; Skinner, H. A. In The Chemistry of the Metal−
Carbon Bond; Hartley, F. R., Patai, S., Eds.; Wiley: Chichester, U.K.,
1982; Vol. 1, Chapter 2, p 68. (b) O’Neill, M. E.; Wade, K. In
Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A.,
Abel, E. W., Eds.; Pergamon: Oxford, U.K., 1982; Vol. 1, Chapter 1, p 8.
(10) (a) Lucchini, V.; Modena, G.; Valle, G.; Capozzi, G. J. Org. Chem.
1981, 46, 4720. (b) Lucchini, V.; Modena, G.; Pasquato, L. J. Am.
Chem. Soc. 1993, 115, 4527. (c) Destro, R.; Lucchini, V.; Modena, G.;
Pasquato, L. J. Org. Chem. 2000, 65, 3367.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
NMR spectra for all of the products (PDF)
D
Org. Lett. XXXX, XXX, XXX−XXX