A R T I C L E S
Zhu et al.
class. The original syntheses have been refined and improved,8
new total syntheses by Phillips9 and Ramachandran10 have
appeared, and partial syntheses of key fragments have provided
additional new options.11 Building on these foundations, our
group12 and Paterson’s13 have made an assortment of analogues
and stereoisomers of dictyostatin either by modifications of
existing synthetic routes or by introducing new routes. A clear
outline of the dictyostatin SAR has emerged,14 and several
potent analogues with potential advantages over dictyostatin
itself have been identified. Most importantly, in the first in vivo
studies of any dictyostatin, synthetic analogue 6-epi-dictyostatin
was more effective than paclitaxel in treating mice bearing
human breast cancer xenografts.15
An important next step in the field would be to advance
dictyostatin, 6-epi-dictyostatin, or another analogue farther down
the road of preclinical development toward possible clinical
trials. The current syntheses of dictyostatin are, however, at the
outer limit of today’s technology for scale-up, and the active
analogues of dictyostatin are not that much simpler to make
than is the parent. So, there is a need for streamlined syntheses
Figure 1. High-level plan of the vinyllithium approach.
(8) Review: Florence, G. J.; Gardner, N. M.; Paterson, I. Nat. Prod. Rep.
2008, 25, 342–375.
of the class and for discovery of analogues with biological
profiles comparable to that of dictyostatin but that are easier to
make. Here we report advances toward both of these objectives.
Based on SAR and metabolic lability analyses,12f,16 we
identified 16-desmethyl-25,26-dihydrodictyostatin and its 6-epimer
as potential analogues of dictyostatin that might be active yet
considerably easier to make. We have developed three new,
streamlined routes to this class of compounds that are based on
vinyllithium addition, ring-closing metathesis (RCM), and
Nozaki-Hiyama-Kishi (NHK) coupling. Along the way, we
implemented a straightforward esterification method to make
the problematic O22-C1 bond. In contrast to related macro-
lactonization reactions, no isomerization of the adjacent C2-C3
alkene was observed. To culminate the synthesis studies, the
NHK approach was used to make (-)-dictyostatin itself. This
is the first synthesis in which all of the carbon atoms of the
molecule are built into the three main fragments so that none
are introduced after fragment couplings begin. The increased
convergency makes this the shortest current synthesis of
dictyostatin. Finally, both of the new analogues exhibit interest-
ing results in preliminary biological assays.
(9) O’Neil, G. W.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128, 5340–
5341.
(10) Ramachandran, P. V.; Srivastava, A.; Hazra, D. Org. Lett. 2007, 9,
157–160.
(11) (a) O’Neil, G. W.; Phillips, A. J. Tetrahedron Lett. 2004, 45, 4253–
4256. (b) Kangani, C. O.; Bru¨ckner, A. M.; Curran, D. P. Org. Lett.
2005, 7, 379–382. (c) Baba, V. S.; Das, P.; Mukkanti, K.; Iqbal, J.
Tetrahedron Lett. 2006, 47, 7927–7930. (d) Jagel, J.; Maier, M. E.
Synlett 2006, 693–696. (e) Prusov, E.; Rohm, H.; Maier, M. E. Org.
Lett. 2006, 8, 1025–1028. (f) Shaw, S. J.; Zhang, D.; Sundermann,
K. F.; Myles, D. C. Synth. Commun. 2006, 36, 1735–1743. (g) Gennari,
C.; Castoldi, D.; Sharon, O. Pure Appl. Chem. 2007, 79, 173–180.
(h) Monti, C.; Sharon, O.; Gennari, C. Chem. Commun. 2007, 4271–
4273. (i) Moura-Letts, G.; Curran, D. P. Org. Lett. 2007, 9, 5–8. (j)
Saibaba, V.; Sampath, A.; Mukkanti, K.; Iqbal, J.; Das, P. Synthesis
2007, 2797–2802. (k) Sharon, O.; Monti, C.; Gennari, C. Tetrahedron
2007, 63, 5873–5878. (l) Zanato, C.; Pignataro, L.; Hao, Z.; Gennari,
C. Synthesis 2008, 2158–2162. (m) Dias, L. C.; Lima, D. J. P.;
Gonc¸alves, C. C. S.; Andricopulo, A. D. Eur. J. Org. Chem. 2009,
10, 1491–1494. (n) Dilger, A. K.; Gopalsamuthiram, V.; Burke, S. D.
J. Am. Chem. Soc. 2007, 129, 16273–16277.
(12) (a) Shin, Y.; Choy, N.; Turner, T. R.; Balachandran, R.; Madiraju,
C.; Day, B. W.; Curran, D. P. Org. Lett. 2002, 4, 4443–4446. (b)
Shin, Y.; Fournier, J. H.; Balachandran, R.; Madiraju, C.; Raccor, B. S.;
Zhu, G.; Edler, M. C.; Hamel, E.; Day, B. W.; Curran, D. P. Org.
Lett. 2005, 7, 2873–2876. (c) Fukui, Y.; Bru¨ckner, A. M.; Shin, Y.;
Balachandran, R.; Day, B. W.; Curran, D. P. Org. Lett. 2006, 8, 301–
304. (d) Jung, W. H.; Harrison, C.; Shin, Y.; Fournier, J. H.;
Balachandran, R.; Raccor, B. S.; Sikorski, R. P.; Vogt, A.; Curran,
D. P.; Day, B. W. J. Med. Chem. 2007, 50, 2951–2966. (e) Shin, Y.;
Fournier, J.-H.; Bru¨ckner, A.; Madiraju, C.; Balachandran, R.; Raccor,
B. S.; Edler, M. C.; Hamel, E.; Sikorski, R. P.; Vogt, A.; Day, B. W.;
Curran, D. P. Tetrahedron 2007, 63, 8537–8562. (f) Raccor, B. S.;
Vogt, A.; Sikorski, R. P.; Madiraju, C.; Balachandran, R.; Montgom-
ery, K.; Shin, Y.; Fukui, Y.; Jung, W.-H.; Curran, D. P.; Day, B. W.
Mol. Pharmacol. 2008, 73, 718–726.
Results and Discussion
Analogue Design and Vinyllithium Addition Route. The new
analogues targeted in this work are 16-desmethyl-25,26-dihy-
drodictyostatin (2b) and its 6-epimer, 2a (see Figure 1). These
were selected for several reasons. First, removal of the C16
methyl group deletes an isolated stereocenter, thereby simplify-
ing the synthesis. 16-Desmethyldictyostatin is a known com-
pound with an interesting biological profile.12b,13c Second,
metabolism16 and SAR work in the discodermolide area17
suggested that modification of the terminal C25-C26 alkene
of dictyostatin, while retaining good activity, might be possible.
Reduction of this alkene provides a dihdyro analogue that is
not much simpler than the parent. We felt, however, that
(13) (a) Paterson, I.; Gardner, N. M. Chem. Commun. 2007, 49–51. (b)
Paterson, I.; Gardner, N. M.; Poullenneca, K. G.; Wright, A. E. Bioorg.
Med. Chem. Lett. 2007, 17, 2443–2447. (c) Paterson, I.; Gardner,
N. M.; Guzma´n, E.; Wright, A. E. Bioorg. Med. Chem. Lett. 2008,
18, 6268–6272. (d) Paterson, I.; Gardner, N. M.; Poullennec, K. G.;
Wright, A. E. J. Nat. Prod. 2008, 71, 364–369. (e) Paterson, I.; Naylor,
G. J.; Wright, A. E. Chem. Commun. 2008, 4628–4630. (f) Paterson,
I.; Gardner, N. M.; Guzma´n, E.; Wright, A. E. Bioorg. Med. Chem.
2009, 17, 2282–2289. (g) Paterson, I.; Gardner, N. M.; Naylor, G. J.
Pure Appl. Chem. 2009, 81, 169–180. (h) Paterson, I.; Naylor, G. J.;
Fujita, T.; Guzma´n, E.; Wright, A. E. Chem. Commun. 2010, 261–
263.
(16) Fan, Y.; Schreiber, E. M.; Day, B. W. J. Nat. Prod. 2009, 72, 1748–
1754.
(17) (a) Choy, N.; Shin, Y.; Nguyen, P. Q.; Curran, D. P.; Balachandran,
R.; Madiraju, C.; Day, B. W. J. Med. Chem. 2003, 46, 2846–2864.
(b) Minguez, J. M.; Kim, S.-Y.; Giuliano, K. A.; Balachandran, R.;
Madiraju, C.; Day, B. W.; Curran, D. P. Bioorg. Med. Chem. 2003,
11, 3335–3357. (c) Smith, A. B., III; Xian, M. Org. Lett. 2005, 7,
5229–5232.
(14) Canales, A.; Matesanz, R.; Gardner, N. M.; Andreu, J. M.; Paterson,
I.; D´ıaz, J. F.; Jime´nez-Barbero, J. Chem.sEur. J. 2008, 14, 7557–
7569.
(15) Eiseman, J. L.; Bai, L.; Jung, W.-H.; Moura-Letts, G.; Day, B. W.;
Curran, D. P. J. Med. Chem. 2008, 51, 6650–6653.
9
9176 J. AM. CHEM. SOC. VOL. 132, NO. 26, 2010