Prochiral Radical Addition to Prochiral Olefins
A R T I C L E S
Table 1. Effect of Radical Precursor on Diastereoselectivity
loalkyl, and R-alkoxyalkyl radicals to prochiral enoate acceptors.
Our study finds that R-haloalkyl radicals add with remarkably
high selectivity and R-alkoxyalkyl radicals with moderate to
good selectivity. In contrast, R-alkyl radicals add with low
diastereoselectivity, even at low temperature. Issues of steric
bulk, electronics, and Lewis acid additives will also be ad-
dressed.
Results
Our work began with the examination of simple diastereo-
selectivity in the addition of prochiral radicals to oxazolidinone
(7) (a) For examples and discussions on ionic reactions involving prochiral
reagents and prochiral substrates, see: Heathcock, C. H. In Asymmetric
Syntheses; Morrison, J. D., Ed.; Academic: New York, 1984; Vol. 3, Part
B, Chapter 2. (b) Perlmutter, P. Conjugate Addition Reactions in Organic
Synthesis; Pergamon: Oxford, 1992. (c) For some seminal work, see: Oare,
D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H. J. Org. Chem.
1990, 55, 132. (d) Oare, D. A.; Heathcock, C. H. J. Org. Chem. 1990, 55,
157. (e) For conjugate additions of R-alkoxy organometallics to conjugated
systems, see: Chong, J. M.; Mar, E. K. Tetrahedron Lett. 1990, 31, 1981.
(f) Linderman, R. L.; McKenzie, J. R. Tetrahedron Lett. 1988, 29, 3911.
Selected examples of prochiral nucleophile addition to prochiral acceptors
under ionic conditions: (g) Lim, S. H.; Curtis, M. D.; Beak, P. Org. Lett.
2001, 3, 711. (h) Nishwaki, N.; Knudsen, K. R.; Gothelf, K. V.; Jorgensen,
K. A. Angew. Chem., Int. Ed. 2001, 40, 2992. (i) Juhl, K.; Gathergood, N.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995. (j) Liang, B.;
Carroll, P. J.; Joullie, M. M. Org. Lett. 2000, 2, 4157. Selected examples
of prochiral nucleophile addition to prochiral acceptors under neutral
conditions: (k) Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Downey, C.
W.; Tedrow, J. S. J. Am. Chem. Soc. 2000, 122, 9134. (l) Evans, D. A.;
Willis, M. C.; Johnston, J. N. Org. Lett. 1999, 1, 865. (m) Evans, D. A.;
Scheidt, K. A.; Johnston, J. S.; Willis, M. C. J. Am. Chem. Soc. 2001, 123,
4480. (n) Kitajima, H.; Ito, K.; Katsuki, T. Tetrahedron 1997, 53, 17015.
(o) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (p) Bernardi,
A.; Colombo, G.; Scolastico, C. Tetrahedron Lett. 1996, 37, 8921. (q) For
prochiral radical addition to an aldehyde, see: Ohno, T.; Ishino, Y.;
Tsumagari, Y.; Nishiguchi, I. J. Org. Chem. 1995, 60, 458.
(8) For nitroxyl radical reactions, see: (a) Braslau, R.; Naik, N.; Zipse, H. J.
Am. Chem. Soc. 2000, 122, 8421. (b) Radical addition to substituted
stannanes: Damm, W.; Hoffmann, U.; Macko, L.; Neuberger, M.; Zehnder,
M.; Giese, B. Tetrahedron 1994, 50, 7029. (c) Hamon, D. P. G.; Massy-
Westropp, R. A.; Razzino, P. Tetrahedron 1995, 51, 4183. (d) Fliri, H.;
Mak, C.-P. J. Org. Chem. 1985, 50, 3438. (e) Easton, C. J.; Scharfbling,
I. M. J. Org. Chem. 1990, 55, 384. (f) Addition of an arenechromiumtri-
carbonyl prochiral radical to methyl crotonate: Merlic, C. A.; Xu, D. J.
Am. Chem. Soc. 1991, 113, 9855. (g) Merlic, C. A.; Walsh, J. C. J. Org.
Chem. 2001, 66, 2265. (h) Addition of prochiral radicals to prochiral carbene
complexes: Merlic, C. A.; Xu, D.; Nguyen, M. C. Tetrahedron Lett. 1993,
34, 227. (i) Addition of prochiral radicals to furanones: Bertrand, S.;
Hoffman, N.; Pete, J.-P. Eur. J. Org. Chem. 2000, 2227. (j) Bertrand, S.;
Glapski, C.; Hoffmann, N.; Pete, J.-P. Tetrahedron Lett. 1999, 40, 3169.
(k) Marinkovi, S.; Hoffmann, N. Chem. Commun. 2001, 1576. For other
examples of intermolecular prochiral radical addition to acceptors, see: (l)
Mikami, K.; Yamaoka, M. Tetrahedron Lett. 1998, 39, 4501. (m) Ahn, J.
H.; Lee, D. W.; Juong, M. J.; Lee, K. H.; Yoon, N. M. Synlett 1996, 1224.
(n) Mero, C. L.; Porter, N. A. J. Am. Chem. Soc. 1999, 121, 5155. For
some selected examples of intramolecular radical reactions, see: (o) Sasaki,
M.; Inoue, M.; Noguchi, T.; Takeichi, A.; Tachibana, K. Tetrahedron Lett.
1998, 39, 2783. (p) Andres, C.; Duque-Soladana, J. P.; Pedrosa, R. J. Org.
Chem. 1999, 64, 4282. (q) White, J. D.; Shin, H. Tetrahedron Lett. 1997,
38, 1141. (r) Lee, E. In Radicals in Organic Synthesis; Renaud, P., Sibi,
M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2, Chapter 4.2. (s) Hart,
D. J. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-
VCH: Weinheim, 2001; Vol. 2, Chapter 4.1. (t) For an example on
intermolecular radical coupling using chiral Lewis acids, see: Nguyen, P.
Q.; Scha¨fer, H. J. Org. Lett. 2001, 3, 2993.
entry
radical precursor
product
yielda (%)
ratio (syn:anti)
1
2
3
4
5
6
7
6a
6bd
6c
6d
6e
6f
5a
5b
5c
5d
5e
5f
80
40
83
93
88
90b
70c
1.8:1
1.3:1
2.0:1
2.0:1
1.2:1
1:15
6g
5g
1:17
a Reactions were run for 4 h using Yb(OTf)3, Bu3SnH, and Et3B/O2 in
2:1 CH2Cl2:THF unless otherwise noted. Yields are for the purified product.
b Five initiation cycles over 24 h, 10% ethyl addition. c Five initiation cycles
over 24 h, 30% ethyl addition. d Reaction using a radical precursor (R1 )
Me, R2 ) t-Bu, X ) I) gave no desired product.
crotonate (Table 1, eq 2). The radical additions were conducted
according to our standard reported procedure,3c involving (1)
tin hydride as reducing agent/chain carrier, (2) Et3B/O2 as low-
temperature radical initiator, and (3) Yb(OTf)3 as an activating
Lewis acid.11,12 We chose Yb(OTf)3 for reasons of convenience,
because its stability to water obviated the need for drybox
techniques or careful exclusion of air. In addition, Yb(OTf)3 is
sufficiently mild to be compatible with the other reactants and
can be used in substoichiometric quantities. THF serves to
dissolve the Yb(OTf)3 (as well as other lanthanide Lewis acids).
The addition of simple alkyl radicals (Table 1, entries 1-4)
proceeded with modest levels of diastereoselectivity. A slight
preference for syn addition was observed, but even at -78 °C
maximum selectivities of only 2:1 were observed.13 Results
indicated that increasing the bulk of the R2 alkyl group had
little influence on the diastereoselectivity of the addition. Simple
alkyl radicals are relatively nucleophilic, and their additions are
uncomplicated by possible electronic effects or chelation. The
highly reactive and highly nucleophilic methoxy-substituted
radical derived from 6e also showed low selectivity (entry 5)
(see eq 5 for synthesis of 6e, vide infra).
On the other hand, halogenated radicals derived from 6f and
6g added with remarkably high levels of diastereoselectivity
(15:1 and 17:1; entries 6, 7). The major diastereomer in each
case was determined to be anti by lactonization of the product
halides. Due to the electrophilic nature of these radicals,
however, several technical problems are encountered in these
reactions. Radicals generated from 6f and 6g are considerably
less reactive than the simple alkyl radicals, which necessitated
(9) (a) For an excellent recent review, see: Molander, G. A. In Radicals in
Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim,
2001; Vol. 1, Chapter 2.1. For other reviews, see: (b) Molander, G. A.;
Harris, C. I. Chem. ReV. 1996, 96, 307. (c) Gansa¨uer, A.; Bluhm, H. Chem.
ReV. 2000, 100, 2771. For some selected examples, see: (d) Otsubo, K.;
Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 5763. (e) Molander,
G. A.; Harris, C. I. J. Org. Chem. 1997, 62, 7418. (f) Taniguchi, N.;
Uemura, M. Tetrahedron Lett. 1997, 38, 7199. (g) Fukuzawa, S.; Nakanishi,
A.; Fujinami, T.; Sakai, S. J. Chem. Soc., Chem. Commun. 1986, 624. (h)
Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. J. Chem. Soc., Perkin
Trans. 1 1988, 1669. (i) Inanaga, J.; Ujikawa, O.; Handa, Y.; Otsubo, K.;
Yamaguchi, M. J. Alloys Compd. 1993, 192, 197. (j) Kawatsura, M.;
Matsuda, F.; Shirahama, H. J. Org. Chem. 1994, 59, 6900. (k) Enholm, E.
J.; Trivellas, A. Tetrahedron Lett. 1994, 35, 1627. For reactions with stannyl
ketyls, see: (l) Enholm, E. J.; Kinter, K. S. J. Org. Chem. 1995, 60, 4850.
(10) (a) Fukuzawa, S.-i.; Seki, K.; Tatsuzawa, M.; Mutoh, K. J. Am. Chem.
Soc. 1997, 119, 1482. (b) Matsuda, F.; Kawatsura, M.; Dekura, F.;
Shirahama, H. J. Chem. Soc., Perkin Trans. 1 1999, 2371. (c) Kawatsura,
M.; Dekura, F.; Shirahama, H.; Matsuda, F. Synlett 1996, 373. (d) Reference
8l.
(11) For an excellent review on Lewis acid-mediated radical reactions, see:
Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. 1998, 37, 2562.
(12) Each of these components was important to the success of the additions,
as demonstrated by reactions using crotonate 4 and bromide 16c to give
18c. In the absence of either Et3B or tributyltin hydride, no product 18c
formed. These experiments confirm that a radical mechanism is operative.
(13) The relative stereochemistry was determined by an independent synthesis
of syn-3,4-dimethylhexanoic acid and comparison with hydrolyzed 5a. See
Supporting Information for details.
9
J. AM. CHEM. SOC. VOL. 124, NO. 12, 2002 2925