Organic Letters
Letter
in our previous work.17a Whether the free base or the HCl-
salted amine was used appeared to have no impact on the
overall yield (compare entries 4 and 5).
(b) Thianpatunagul, S.; Sridharan, V.; Grigg, R. J. Chem. Soc., Perkin
Trans. 1 1986, 1669−1675.
(4) Barr, D. A.; Grigg, R.; Sridharan, V. Tetrahedron Lett. 1989, 30,
4727−4730.
Recognizing the value of accessing pyrrolidines not easily
prepared through classical protocols, we viewed our findings as
an underdeveloped method for ylide formation and set out to
investigate the scope of the electrophile. Based on our success
with ethyl glyoxylate, we hypothesized that additional α-
dicarbonyl systems such as arylglyoxaldehydes and heteroaryl-
glyoxaldehydes, each bearing functional groups available for
both imine condensation and metal coordination, should meet
the criteria for azomethine ylide formation and react
accordingly. Phenyl glyoxal (30, Table 3) was first selected,
and gratifyingly, its ability to furnish azomethine ylides upon
condensation with amines 14, 15, 21−23, and 25 was
successfully demonstrated. Good to excellent yields were
obtained for allylic, substituted allylic, α-aryl, and conjugated
α-aryl systems, each delivering the corresponding cycloadducts
(31−36) as one observable diastereomer.
Indole glyoxal (37, Table 4) was next investigated as our
specific interest in this electrophile centers on its anticipated
utility in alkaloid total synthesis.22 In either MeCN or THF,
good to excellent yields were again achieved for all entries.
In summary, we present the first examples of azomethine
ylides from allylic amine and glyoxylate or glyoxal precursors,
thereby expanding the methods through which these important
ylide intermediates may be prepared. It is also important to
emphasize that because the corresponding cycloadducts are not
readily obtained through the classical method of generating
azomethine ylides from α-amino ester precursors, the scope of
pyrrolidine scaffolds obtainable through dipolar cycloaddition is
also expanded.23 Efforts toward catalytic, asymmetric variants
and applications in alkaloid total synthesis are currently
underway.
(5) Grigg, R.; Sridharan, V. In Advances in Cycloaddition; Curran, D.
P., Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, p 161.
(6) For a review, see: Pandey, G.; Banerjee, P.; Gadre, S. R. Chem.
Rev. 2006, 106, 4484−4517.
(7) For selected, recent examples, see: (a) Yamashita, Y.; Imaizumi,
T.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 4893−4896.
(b) Wang, M.; Wang, Z.; Shi, Y.-H.; Shi, X.-X.; Fossey, J. S.; Deng, W.-
P. Angew. Chem., Int. Ed. 2011, 50, 4897−4900. (c) Naj
́
era, C.;
Sansano, J. M. Angew. Chem., Int. Ed. 2005, 44, 6272−6276.
(8) Recent reports: (a) Liu, Y.-K.; Liu, H.; Du, W.; Yue, L.; Chen, Y.-
C. Chem.Eur. J. 2008, 14, 9873−9877. (b) Chen, X.-H.; Zhang, W.-
Q.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 5652−5653. (c) Vicario,
J. L.; Reboredo, S.; Badía, D.; Carrillo, L. Angew. Chem., Int. Ed. 2007,
46, 5168−5170.
(9) Zaminer, J.; Brockmann, C.; Huy, P.; Opitz, R.; Reuter, C.;
Beyermann, M.; Freund, C.; Muller, M.; Oschkinat, H.; Kuhne, R.;
̈
̈
Schmalz, H. Angew. Chem., Int. Ed. 2010, 49, 7111−7115.
(10) Krueger, A. C.; Xu, Y.; Kati, W. M.; Kempf, D. J.; Maring, C. J.;
McDaniel, K. F.; Molla, A.; Montgomery, D.; Kohlbrenner, W. E.
Bioorg. Med. Chem. Lett. 2008, 18, 1692−1695.
(11) Bulusu, M.; Waldstatten, P.; Tricotet, T.; Rochais, C.; Steck, A.;
̈
Bacher, M. Tetrahedron Lett. 2004, 45, 5833−5836.
(12) Beal, L. M.; Liu, B.; Chu, W.; Moeller, K. D. Tetrahedron 2000,
56, 10113−10125.
(13) Kitayama, T.; Hall, H. K. Macromolecules 1987, 20, 1451−1415.
(14) Hall, H. K. Makromol. Chem.-M. Symp. 1992, 54/55, 73−81.
(15) Gu, Y. G.; Xu, Y.; Krueger, A. C.; Madigan, D.; Sham, H. L.
Tetrahedron Lett. 2002, 43, 955−957.
(16) For a limited example, see: Cheng, M.-N.; Wang, H.; Gong, L.-
Z. Org. Lett. 2011, 13, 2418−2421.
(17) (a) McCormack, M. P.; Shalumova, T.; Tanski, J. M.; Waters, S.
P. Org. Lett. 2010, 12, 3906−3909. (b) McCormack, M. P.; Waters, S.
P. J. Org. Chem. 2013, 78, 1176−1183. (c) Liu, X.; McCormack, M. P.;
Waters, S. P. Org. Lett. 2012, 14, 5574−5577.
(18) (a) De Lamo Marin, S.; Catala, C.; Kumar, S. R.; Valleix, A.;
Wagner, A.; Mioskowski, C. Eur. J. Org. Chem. 2010, 21, 3985−3989.
(b) Barluenga, J.; Mateos, C.; Aznar, F.; Valdez, C. J. Org. Chem. 2004,
69, 7114−7122.
(19) Processes taking advantage of this effect for benzylic amines
have only recently emerged: (a) Tian, L.; Hu, X.-Q.; Li, Y.-H.; Xu, P.-
F. Chem. Commun. 2013, 9, 7213−7215. (b) Guo, C.; Song, J.; Gong,
L.-Z. Org. Lett. 2013, 15, 2676−2679.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data. This
material is available free of charge via the Internet at http://
■
S
AUTHOR INFORMATION
Corresponding Author
■
(20) (a) Ardill, H.; Fontaine, X. L. R.; Grigg, R.; Henderson, D.;
Montgomery, J. Tetrahedron 1990, 46, 6449−6466. (b) Grigg, R.;
Rankovic, Z.; Thornton-Pett, M.; Somasunderam, A. Tetrahedron
1993, 49, 8679−8690.
Notes
(21) Wiecek, M.; Kottke, T.; Ligneau, X.; Schunack, W.; Seifert, R.;
Stark, H.; Handzlik, J.; Kiec-Kononowicz, K. Bioorg. Med. Chem. 2011,
19, 2850−2858.
The authors declare no competing financial interest.
(22) See, for example, the pyrrolidine-containing indole alkaloid
ACKNOWLEDGMENTS
■
borrecapine: Jossang, A.; Pousset, J. L.; Jacquemin, H.; Cave,
́
A.
This work was supported by the Vermont Genetics Network
and Grant Number 8P20GM103449 from the INBRE Program
of the National Institute of General Medical Sciences
(NIGMS), a component of the National Institutes of Health
(NIH). We thank Mr. Bruce O’Rourke and Dr. Ying Wai Lam
at UVM for assistance in obtaining and mass spectral data.
Tetrahedron Lett. 1977, 18, 4317−4318.
(23) To demonstrate the amenability of this process to multigram
synthesis, a scaled-up reaction of 14 (60 mmol), 16 (60 mmol), and
17 (30 mmol) delivered 6.13 g (65% yield) of pyrrolidine 18 after
purification by column chromatography.
REFERENCES
■
(1) (a) Kemp, J.; Sheldrick, G.; Trotter, J.; Grigg, R. J. Chem. Soc.,
Chem. Commun. 1978, 109−111. (b) Thompson, N.; Kemp, J.; Grigg,
R. J. Chem. Soc., Perkin Trans. 1 1978, 31, 2827−2830.
(2) Joucla, M.; Hamelin, J. Tetrahedron Lett. 1978, 19, 2885−2888.
(3) (a) Barr, D. A.; Grigg, R.; Nimal Gunaratne, H. Q.; Kemp, J.;
McMeekin, P.; Sridharan, V. Tetrahedron 1988, 44, 557−570.
4999
dx.doi.org/10.1021/ol5022614 | Org. Lett. 2014, 16, 4996−4999