Heravi et al.
NOTE
Table 2 Synthesis of 3a in different solvents using DABCO as a
catalyst
was cooled and the precipitate formed was filtered off
and recrystallized from ethanol to give pure product.
1
3a: m.p. 290 ℃ (Lit.14 288—289 ℃); H NMR δ:
Entry
Solvent
THF
Time/h
Yielda/%
2.62 (s, 3H, CH3), 2.68 (s, 3H, CH3), 6.80 (1H,+5H, Ph);
-1
1
2
3
4
5
6
2
68
75
85
75
81
90
IR (KBr) ν: 2200, 1640 cm ; GC/MS: 148 (M ).
CH3OH
CH3CN
CHCl3
2.20
3
References
1.25
4
1
(a) Collins, L.; Moyes, C.; Davey, W. B.; Rowley, M.; Bro-
midge, F. A.; Quirk, K.; Atack, J. R.; McKeman, R. M.;
Thompson, S. A.; Wafford, K.; Dawson, G. R.; Pike, A.;
Sohal, B.; Tsou, N. N.; Ball, R. G.; Castro, J. L. J. Med.
Chem. 2002, 45, 1887.
Solvent-free
C2H5OH
1
a Yields were analyzed by GC.
Table 3 Synthesis of 3a using various catalysts
(b) Saiki, A. Y. C.; Shen, L. L.; Chen, C. M.; Baranowski, J.;
Lemer, C. G. Antimicrob. Agents Chemother. 1999, 43, 1574.
(c) Li, Q.; Mitcher, L. A.; Shen, L. L. Med. Res. Rev. 2000,
231.
Entry
1
Catalyst
Na2CO3
Time/h
1.45
Yielda/%
68
83
2
3
4
Brickner, S. Chem. Ind. 1997, 131.
2
K2CO3
1.30
81 (r.t.)16
85
Kawato, Y.; Erasawa, H. Prog. Med. Chem. 1997, 34, 69.
Murray, T.; Zimmerman, S. Tetrahedron Lett. 1995, 36,
7627.
Mijin, D.; Marinkovic, A. Synth. Commun. 2006, 36, 193.
(a) Meislich, H. In Pyridine and Its Derivatives, Vol. 3, Ed.:
Klingsberg, E., lntersience, New York, 1962, p. 509.
(b) Jones, G. In Comprehensive Heterocyclic Chemistry, Vol.
2A, Eds.: Katritzky, A. R.; Rees, C. W., Pergamon Press,
Oxford, U. K., 1984, p. 395.
Pan, J. F.; Chen, K. Tetrahedron Lett. 2004, 45, 2541.
(b) Radha, K. P.; Maryurani, A.; Kannan, V.; Shasma, G. V.
M. Tetrahedron Lett. 2004, 45, 1183.
(a) Sheen, W. C.; Lazanov, M.; Rejic, O. Tetrahedron Lett.
2003, 44, 6943.
3
4
Et3N
2
1
DABCO
90
a Yields were analyzed by GC.
5
6
and low cost, which make it a useful and attractive
process for the synthesis of these compounds.
Experimental
7
8
Chemicals were purchased from Fluka, Merck and
Aldrich chemical companies. Melting points were
measured with a Bamstead Electrothermal 9200 appa-
ratus and are uncorrected. GC/MS data were recorded
on an Agilent Technologies 6890 network GC system
and an Agilent 5973 network mass selective detector.
Thin layer chromatography (TLC) on commercial alu-
minum-backed plates of silica gel, 60 F254 was used to
monitor the progress of reactions. 1H NMR spectra were
recorded on a Bruker AQS AVANCE-300 MHz spec-
trometer using TMS as an internal standard (CDCl3 so-
lution). Yields refer to isolated pure products. Products
(b) Shreh, W. C.; Loo, M.; Lazaneer, M.; Rejuc, O.; T.
Blacklock, T. J. Tetrahedron Lett. 2003, 44, 4563.
Takkewaki, T.; Beck, L. W.; Danis, M. E. Microporous
Mesoporous Mater. 1999, 33, 197.
9
10 Veeraraghavan, P.; Michael, R.; Rudd, T.; Reddy, M. V. R.
Tetrahedron Lett. 1999, 40, 3819.
11 Basavaiah, D.; Bharathi, T. K.; Gawzeswaie, V. V. L. Tetra-
hedron Lett. 1987, 28, 4352.
12 Basavaiah, D.; Gawriswari, V. V. L.; Baharathine, T. K. Tet-
rahedron Lett. 1987, 28, 4591.
13 (a) Heravi, M. M.; Oskooie, H. A.; Baghernejad, B. J. Chin.
Chem. Soc. 2007, 54, 767.
1
were identified by GC/MS and H NMR and the data
were compared to those of the authentic samples pur-
chased from commercial sources.
General procedure for preparation of 3,4,6-tri-
substituted 2-pyridones: A mixture of a 1,3-diketone (1
mmol), cyanoacetamide (1 mmol), and DABCO 1
mol% in ethanol (5 mL) was refluxed within 1—1.5 h.
The progress of the reaction was monitored by TLC.
After completion of the reaction, the reaction mixture
(b) Heravi, M. M.; Hekmatshoar, R.; Pedram, L. J. Mol.
Catal. A: Chem. 2005, 89, 231.
(c) Bamoharram, F. F.; Heravi, M. M.; Roshani, M. J. Chin.
Chem. Soc. 2007, 54, 1017.
14 Haley, C. A. C.; Maitland, P. J. Chem. Soc. 1951, 3155.
(E0812241 Zhao, C.; Fan, Y.)
672
© 2010 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2010, 28, 670— 672