J. Adam Hendricks et al. / Bioorg. Med. Chem. Lett. 23 (2013) 3635–3639
3639
Table 1
(J.A.H.). We gratefully acknowledge the contribution of Professor
John A. Katzenellenbogen, whose research group carried out the
ER binding assays for the parent steroidal anti-estrogen.
Anti-proliferation activity of ateroidal antiestrogen–geldanamycin (AE–GDA) conju-
gates 7a–7c
Compd
MCF-7 (IC50
)
SKBr3 (IC50)
9.8 0.1a nM
1150 90 nM
102 4.6 nM
8.5 1.1a nM
710 160 nM
41 4.6 nM
N.D.
Supplementary data
5 (GDA)
7a
7b
Supplementary data associated with this article can be found, in
7c
15200 3000 nM
IC50 = concentration needed to produce 50% inhibition.
a
Ref. 15. ND = not determined.
References and notes
that property. It is possible that for these conjugates that cellular
uptake may be mediated via the membrane estrogen receptor
but that effective intracellular distribution requires dissociation
of the therapeutic component from the antiestrogen targeting
group. Continued association with the antiestrogen component
may reduce the effectiveness of the drug from accessing its site
of action, even if elevated intracellular concentrations are ob-
tained. Oligoethylene glycol linkes, such as those used in 7b and
the doxorubicin–anitestrogen conjugate, may also contribute
physicochemical properties that enhance cellular uptake. Because
of the potent antiproliferative activity observed for 7b, incorpoara-
tion of a linker that can impart both properties may generate the
desired biological effect.
1. Garcia, M.; Jemal, A.; Ward, E. M.; Center, M. M.; Hao, Y.; Siegel, R. L. Global
Cancer Facts and Figures 2007; American Cancer Society: Atlanta, Georgia, 2007.
2. Langan Fahey, S. M.; Jordan, V. C.; Fritz, N. F.; Robinson, S. P.; Waters, D.;
Tormey, D. C. Long-Term Tamoxifen Treatment for Breast Cancer In Jordan, V.
C., Ed.; University of Wisconsin Press: Madison, WI, 1994; pp 27–56.
3. Madaio, R. A.; Spalletta, G.; Cravello, L.; Ceci, M.; Repetto, L.; Naso, G. Curr.
Cancer Drug Targets 2010, 10, 519–528.
4. Dodwell, D.; Williamson, D. Cancer Treat. Rev. 2008, 34, 137–144.
5. Lo, S. S.; Pritchard, K. I.; Robinson, P.; Albain, K. S. Cancer Treat. Res. 2009, 147,
95–123.
6. Meunier, B. Acc. Chem. Res. 2008, 41, 69–77.
7. Kummar, S.; Chen, H. X.; Wright, J.; Holbeck, S.; Millin, M. D.; Tomaszewski, J.;
Zweibel, J.; Collins, J.; Doroshow, J. H. Nat. Rev. Drug Disc. 2010, 9, 843–856.
8. Katzenellenbogen, J. A. Chem. Biol. 2005, 12, 719–721.
9. Hendricks, J. A.; Adam, J.; Gulla, S. V.; Budil, D. E.; Hanson, R. N. Bioorg. Med.
Chem. Lett. 2012, 22, 1743–1746.
10. Hanson, R. N.; Hua, E.; Hendricks, J. A.; Labaree, D.; Hochberg, R. B. Bioorg. Med.
Chem. 2012, 20, 3368–3380.
In conclusion, we have described a convergent strategy for the
preparation of a novel series of novel steroidal antiestrogen-drug
conjugates. This approach has distinct advantages in preparing
and evaluating combinations of targeting groups, therapeutic
drugs and linkers. The conjugates in this study were obtained in
good overall yields and demonstrated significant activity against
two breast cancer cell lines. Although one of the compounds (7b)
demonstrated significant antiproliferative activity, it did not, how-
ever, demonstrate enhanced potency compared to the parent drug
or selectivity for ER-expressing cells as compared to non-express-
ing cells. The results suggest that further modifications in both ER-
targeting strategies and linking groups are needed in order to
achieve greater potency and selectivity in therapeutic drug deliv-
ery. The effects of different linkers on both ER binding and Hsp90
warrant further evaluation as well. Those studies are in progress
and will be described in future publications.
11. Hanson, R. N.; Hua, E.; Larabee, D.; Hochberg, R. B.; Essigmann, J. M.; Croy, R. G.
Org. Biomol. Chem. 2012, 10, 8501–8508.
12. Rutherford, S. L.; Lindquist, S. Nature (Lond.) 1998, 396, 336–342.
13. Hartmann, F.; Horak, E. M.; Cho, C.; Lupu, R.; Bolen, J. B.; Stetler-Stevenson, M.
A.; Pfreundschuh, M.; Waldmann, T. A.; Horak, I. D. Int. J. Cancer 1997, 70, 221–
229.
14. Miller, P.; Schnur, R. C.; Barbacci, E.; Moyer, M. P.; Moyer, J. D. Biochem. Biophys.
Res. Commun. 1994, 201, 1313–1319.
15. Clevenger, R. C.; Raibel, J. M.; Peck, A. M.; Blagg, B. S. J. J. Org. Chem. 2004, 69,
4375–4380.
16. McDonnell, D. P.; Norris, J. D. Science 2002, 296, 1642–1644.
17. Stebbins, C. E.; Russo, A. A.; Schneider, C.; Rosen, N.; Hartl, F. U.; Pavletich, N. P.
Cell 1997, 89, 239–250.
18. Ruden, D. M.; Xiao, L.; Lu, X. Mini-Rev. Med. Chem. 2006, 6, 1137–1143.
19. Schnur, R. C.; Corman, M. L.; Gallaschun, R. J.; Cooper, B. A.; Dee, M. F.; Doty, J.
L.; Muzzi, M. L.; Moyer, J. D.; DiOrio, C. I. J. Med. Chem. 2002, 38, 3806–3812.
20. Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302–1315.
21. Remzi Becer, C.; Hoogenboom, R.; Schubert, U. S. Angew. Chem., Int. Ed. 2009,
48, 4900–4908.
22. Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A.
Med. Res. Rev. 2008, 28, 278–308.
23. Shen, G.; Blagg, B. S. J. Org. Lett. 2005, 7, 2157–2160.
24. Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130,
11486–11493.
Acknowledgments
25. Mitra, K.; Marquis, J. C.; Hillier, S. M.; Rye, P. T.; Zayas, B.; Lee, A. S.; Essigmann,
J. M.; Croy, R. G. J. Am. Chem. Soc. 2002, 124, 1862.
26. Dao, K.-L.; Sawant, R. R.; Hendricks, J. A.; Ronga, V.; Vladimir, P.; Torchilin, V. P.;
Hanson, R. N. Bioconjugate Chem. 2012, 23, 785–795.
This work was supported by Public Health Service award 1R01
CA109265 (B.S.J.B), department of Defense BCRP award
W81XWH06-1-0551 (R.N.H.) and NSF-IGERT award NSF-0504331