A. M. Deobald et al. / Tetrahedron Letters 51 (2010) 3364–3367
3367
13. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2002, 41, 2596; (b) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.;
Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210; (c)
Krasinski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K. B.;
Kolb, H. C. J. Am. Chem. Soc. 2005, 127, 6686; (d) Spiteri, C.; Moses, J. E. Angew.
Chem., Int. Ed. 2009, 48, 2.
14. Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809.
15. Wang, C.; Ma, Z.; Sun, X. L.; Gao, Y.; Guo, Y. H.; Tang, Y.; Shi, L. P.
Organometallics 2006, 25, 3259.
16. Sellmann, D.; Engl, K.; Gottschalk-Gaudig, T.; Heinemann, F. W. Eur. J. Inorg.
Chem. 1999, 333.
17. Engman, L.; Stern, D.; Cotgreave, I. A.; Andersson, C. M. J. Am. Chem. Soc. 1992,
114, 9737.
References and notes
1. (a) Wirth, T. Organoselenium Chemistry. In Topics in Current Chemistry;
Springer: Heidelberg, 2000; p 208; (b) Paulmier, C. Selenium Reagents and
Intermediates in Organic Synthesis. In Organic Chemistry Series 4; Baldwin, J. E.,
Ed.; Pergamon Press: Oxford, 1986.
2. (a) Braga, A. L.; Ludtke, D. S.; Vargas, F.; Braga, R. C. Synlett 2006, 1453; (b)
Braga, A. L.; Vargas, F.; Sehnem, J. A.; Braga, R. C. J. Org. Chem. 2005, 70, 9021; (c)
Braga, A. L.; Paixao, M. W.; Ludtke, D. S.; Silveira, C. C.; Rodrigues, O. E. D. Org.
Lett. 2003, 5, 3635; (d) Braga, A. L.; Paixao, M. W.; Marin, G. Synlett 2005, 1975;
(e) Braga, A. L.; Ludtke, D. S.; Sehnem, J. A.; Alberto, E. E. Tetrahedron 2005, 61,
11664; (f) Braga, A. L.; Rodrigues, O. E. D.; Paixão, M. W.; Appelt, H. R.; Silveira,
C. C.; Bottega, D. P. Synthesis 2002, 16, 2338.
3. (a) Mugesh, G.; du Mont, W. W.; Sies, H. Chem. Rev. 2001, 101, 2125; (b)
Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255; (c) Alberto,
E. E.; Soares, L. C.; Sudati, J. H.; Borges, A. C. A.; Rocha, J. B. T.; Braga, A. L. Eur. J.
Org. Chem. 2009, 4211.
4. (a) Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B. Chem. Rev. 2009, 109,
1277; (b) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J. Org. Chem. 2009,
1649.
18. General procedure for the synthesis of nitro-arylselenides: To
a solution of
appropriate diaryl diselenide (5 mmol) in ethanol (25 mL) NaBH4 (10.9 mmol,
0.413 g) was added in three portions under argon. The solution was stirred
until it changed to a colorless solution, then appropriate chloro-nitrobenzene
(9.2 mmol, 1.449 g) in 2 mL of DMSO was added slowly. The mixture was
stirred at a mild reflux for 12 h. After that, the solvent was removed under
vacuum, water (20 mL) was added, and the mixture was extracted with
dichloro methane. The organic layer was dried with MgSO4, concentrated
under vacuum, and the crude product was used in the next step.
5. Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.;
Temperini, A. Angew. Chem., Int. Ed. 2003, 42, 3131.
19. General procedure for the synthesis of aminoarylselenides: The suspension of
nitro-arylselenide (5 mmol), zinc powder (75.4 mmol, 4.935 g), and
ammonium chloride (47.9 mmol, 2.565 g) in THF (38 mL) was refluxed for
20 h under argon atmosphere. The resulting suspension was filtered washing
the solid residue with dichloro methane. The organic layer was dried with
MgSO4, concentrated under vacuum, and the product was isolated by column
chromatography using hexane/ethyl acetate as eluent. Selected spectral and
analytical data for compound 2a: Yield: 84%; yellow oil; IR (KBr) 3462,
6. (a) Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Santoro, S.; Marini, F.;
Bagnoli, L.; Temperini, A. Tetrahedron 2007, 63, 12373; (b) Tingoli, M.; Tiecco,
M.; Chianelli, D.; Balducci, R.; Temperini, A. J. Org. Chem. 1991, 56, 6809; (c)
Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C. Synth.
Commun. 1998, 28, 2167; (d) Hassner, A.; Amarasekara, A. S. Tetrahedron Lett.
1987, 28, 5185; (e) Denis, J. N.; Vicens, J.; Krief, A. Tetrahedron Lett. 1979, 29,
2697; (f) Giuliano, R. M.; Duarte, F. Synlett 1992, 419; (g) Klapötke, T. M.;
Krumm, B.; Polborn, K. J. Am. Chem. Soc. 2004, 126, 710.
7. (a) Riela, S.; Aprile, C.; Gruttadauria, M.; Lo Melo, P.; Noto, R. Molecules 2005, 10,
383; (b) Ward, V. R.; Cooper, N. A.; Ward, A. P. J. Chem. Soc., Perkin Trans. 1 2001,
944; (c) Broggini, G.; Molteni, G.; Zucchi, G. Synthesis 1995, 647.
8. (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005,
44, 5188; (b) Scriven, E. F. V.; Tumbull, K. Chem. Rev. 1988, 88, 297; (c) L’Abbé,
G. Chem. Rev. 1969, 69, 345.
9. (a) Abramovitch, R. A.; Davis, B. A. Chem. Rev. 1964, 64, 149; (b) Borden, W. T.;
Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. Acc. Chem.
Res. 2000, 33, 765; (c) Platz, M. S. Acc. Chem. Res. 1995, 28, 487; (d) Gritsan, N.
P.; Platz, M. S. Adv. Phys. Org. Chem. 2001, 36, 255.
10. (a) Moorhouse, A. D.; Santos, A. M.; Gunaratnam, M.; Moore, M.; Neidle, S.;
Moses, J. E. J. Am. Chem. Soc. 2006, 128, 15972; (b) Lee, L. V.; Mitchell, M. L.;
Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003,
125, 9588.
3363 cmÀ1 1H NMR (CDCl3, 400 MHz) d = 7.48 (dd, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H),
;
7.16–7.06 (m, 6H), 6.69 (d, J = 7.6 Hz, 1H), 6.61 (t, J = 7.6 Hz, 1H), 4.17 (s, 2H);
13C NMR (CDCl3, 100 MHz) d = 148.52, 138.47, 130.97, 129.30, 129.18, 127.54,
126.12, 118.74, 114.95, 112.69. HRMS calcd for C12H11NSe: 249.0057. Found:
250.0141.
20. General procedure for the synthesis of azidoarylselenides: To
a solution of
aminoarylselenide or aminoaryldiselenide (1 mmol) in THF (1.5 mL), iso-
pentyl nitrite (1.55 mmol, 0.21 mL) followed by TMSN3 (1.2 mmol, 0.16 mL)
was added drop by drop at 0 °C under air. Then the mixture was stirred at
0 °C for 10 min, the ice bath was removed, and the mixture was stirred at
room temperature for 0.5–1 h. The solvent was removed under vacuum and
the product was isolated by column chromatography using hexane or
hexane/ethyl acetate as eluent. Selected spectral and analytical data for
compound 3a: Yield: 99%; yellow solid; mp 49.8–50.4 °C; IR (KBr) 2130 cmÀ1
;
1H NMR (CDCl3, 400 MHz) d = 7.56–7.53 (m, 2H), 7.35–7.30 (m, 3H), 7.23 (td,
11. (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun,
J.; Fréchet, J. M. J.; Harpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43,
3928; (b) Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.;
Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem. Commun. 2005, 48, 5775; (c)
Reinhoudt, D. N. Angew. Chem., Int. Ed. 2006, 45, 5292.
12. (a) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J.
Am. Chem. Soc. 2003, 125, 3192; (b) Speers, A. E.; Cravatt, B. F. Chem. Biol. 2004,
11, 535.
J
1 = 8.0 Hz,
1 = 8.0 Hz,
J
2 = 1.2 Hz, 1H), 7.12 (dd,
2 = 1.2 Hz, 1H), 6.94 (td,
J
1 = 8.0 Hz, 2 = 1.2 Hz, 1H), 7.02 (dd,
J
1 = 8.0 Hz, 2 = 1.2 Hz, 1H); 13C NMR
J
J
J
J
(CDCl3, 100 MHz) d = 138.83, 135.10, 131.86, 129.56, 128.30, 128.25, 127.88,
125.52, 124.57, 118.17. HRMS calcd for C12H9N3Se: 274.9962. Found:
274.9970.