Communication
ChemComm
4 (a) P. R. Sacasa, J. Zayas and S. F. Wnuk, Tetrahedron Lett., 2009, 50,
5424–5427; (b) D. Bello and D. O’Hagan, Beilstein J. Org. Chem., 2015,
11, 1902–1909; (c) T. Huang, X. Zhao, X. Ji, W. Wu and S. Cao,
J. Fluorine Chem., 2016, 182, 61–68; (d) Z. S. Cong, Y. G. Li, L. Chen,
F. Xing, C. Z. Gu and L. He, Org. Biomol. Chem., 2017, 15, 3863–3868;
(e) J. Li, W. Rao, S. Y. Wang and S. J. Ji, J. Org. Chem., 2019, 84,
11542–11552; ( f ) J. Wang, B. Huang, C. Yang and W. Xia, Chem.
Commun., 2019, 55, 11103–11106; (g) C. E. Brigham, C. A. Malapit,
N. Lalloo and M. S. Sanford, ACS Catal., 2020, 10, 8315–8320.
5 (a) H. Yanai and T. Taguchi, Eur. J. Org. Chem., 2011, 5939–5954;
(b) S. Hara, Top. Curr. Chem., 2012, 327, 59–86; (c) E. Pfund,
T. Lequeux and D. Gueyrard, Synthesis, 2015, 1534–1546;
(d) X. Zhang and S. Cao, Tetrahedron Lett., 2017, 58, 375–392;
(e) J.-F. Paquin, M. Drouin and J.-D. Hamel, Synthesis, 2018,
881–955.
6 (a) Q. Liu, C. Ni and J. Hu, Natl. Sci. Rev., 2017, 4, 303–325;
(b) D. L. Orsi and R. A. Altman, Chem. Commun., 2017, 53,
7168–7181.
7 (a) T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527–532;
(b) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322–5363; (c) D. P. Hari and B. Konig, Chem. Commun.,
2014, 50, 6688–6699; (d) Q. Liu and L.-Z. Wu, Natl. Sci. Rev., 2017, 4,
359–380; (e) H. Wang, X. Gao, Z. Lv, T. Abdelilah and A. Lei, Chem.
Rev., 2019, 119, 6769–6787; ( f ) F. Glaser and O. S. Wenger, Coord.
Chem. Rev., 2020, 405, 213129.
Eventually, intermediate E triggered the following nucleophilic
addition/b-F elimination reaction with gem-difluoroalkene 1a to
produce product 3aa with the Z-isomer as the major product
(see eqn (S14) in the ESI†) due to the electronic repulsion between
F and aromatic rings,18 along with a visible-light-promoted regio-
selective Z - E isomerization process via a biradical intermediate
(Scheme 2A).8b,14a In this reaction system, path b (Scheme 4) might
also be valid.4f The thiyl radical D was added to 1a, providing the
radical intermediate F. Then the photoredox cycle was accom-
plished through SET reduction of F by [Na2(Eosin Y)]À to furnish
anion G with the concomitant regeneration of the ground-state
photocatalyst. The following transformation was the same as path
a. As an alternative, radical C might disproportionate into radical
A and radical D. While the free energy barrier of disproportionation
was much higher than that of the PPh3-associated procedure, the
disproportionation was unfavorable.10e
In summary, we have disclosed a method to acquire various
a-fluoro-b-arylalkenyl sulfides in good yields and stereoselectiv-
ities. The reactions perform well under mild conditions and are
tolerant of wide varieties of functional groups. Control experi-
ments illustrate that the deoxygenation of S–O bonds refers to
the SET approach by photocatalysis. Importantly, the rare
visible-light-promoted regioselective Z - E isomerization of
a-fluoro-b-arylalkenyl sulfides does not require any photosen-
sitizers. Further mechanistic studies and the application to
pharmaceuticals are underway in our laboratory.
This work was funded by the National Program for Support
of Top-notch Young Professionals, Fund of Taishan scholar
project, Shandong Provincial Natural Science Foundation for
Distinguished Young Scholars (JQ201722), the Qingdao Science
and Technology Benefit People Demonstration Guide Special
Project (20-3-4-20-nsh), and the Fundamental Research Funds
of Shandong University. The Postdoctoral Science Foundation
of China (2019M662377) is also acknowledged. Haiyan Sui and
Xiaoju Li from Shangdong University Core Facilities for Life
and Environmental Sciences are thanked for their help with
the NMR.
8 (a) D. H. Waldeck, Chem. Rev., 1991, 91, 415–436; (b) R. Gilmour
and J. Metternich, Synlett, 2016, 2541–2552; (c) C. M. Pearson and
T. N. Snaddon, ACS Cent. Sci., 2017, 3, 922–924; (d) H. Zhang and
S. Yu, Chin. J. Org. Chem., 2019, 39, 95.
9 A. K. Clarke, A. Parkin, R. J. K. Taylor, W. P. Unsworth and
J. A. Rossi-Ashton, ACS Catal., 2020, 10, 5814–5820.
10 (a) H. Wang, Q. Lu, C. W. Chiang, Y. Luo, J. Zhou, G. Wang and
A. Lei, Angew. Chem., Int. Ed., 2017, 56, 595–599; (b) D. Kaiser,
I. Klose, R. Oost, J. Neuhaus and N. Maulide, Chem. Rev., 2019, 119,
8701–8780; (c) F. Xiao, H. Xie, S. Liu and G.-J. Deng, Adv. Synth.
Catal., 2014, 356, 364–368; (d) L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai
and W. Zhang, Angew. Chem., Int. Ed., 2015, 54, 14965–14969;
(e) Y. M. Lin, G. P. Lu, G. X. Wang and W. B. Yi, J. Org. Chem.,
2017, 82, 382–389.
11 (a) J. A. Rossi-Ashton, A. K. Clarke, W. P. Unsworth and
R. J. K. Taylor, ACS Catal., 2020, 10, 7250–7261; (b) E. E. Stache,
A. B. Ertel, R. Tomislav and A. G. Doyle, ACS Catal., 2018, 8,
11134–11139; (c) M. Zhang, J. Xie and C. Zhu, Nat. Commun.,
2018, 9, 3517; (d) R. Ruzi, J. Ma, X. A. Yuan, W. Wang, S. Wang,
M. Zhang, J. Dai, J. Xie and C. Zhu, Chem. – Eur. J., 2019, 25,
12724–12729; (e) M. Zhang, X. A. Yuan, C. Zhu and J. Xie,
Angew. Chem., Int. Ed., 2019, 58, 312–316; ( f ) R. Ruzi, K. Liu,
C. Zhu and J. Xie, Nat. Commun., 2020, 11, 3312.
12 (a) L. Yang, W. X. Fan, E. Lin, D. H. Tan, Q. Li and H. Wang, Chem.
Commun., 2018, 54, 5907–5910; (b) H. Liu, L. Ge, D. X. Wang,
N. Chen and C. Feng, Angew. Chem., Int. Ed., 2019, 58, 3918–3922;
(c) X. Liu, E. E. Lin, G. Chen, J. L. Li, P. Liu and H. Wang, Org. Lett.,
2019, 21, 8454–8458.
Conflicts of interest
13 Y. Liu, L. Y. Lam, J. Ye, N. Blanchard and C. Ma, Adv. Synth. Catal.,
2020, 362, 2326–2331.
There are no conflicts to declare.
14 (a) K. Singh, S. J. Staig and J. D. Weaver, J. Am. Chem. Soc., 2014, 136,
5275–5278; (b) J. B. Metternich and R. Gilmour, J. Am. Chem. Soc.,
2015, 137, 11254–11257; (c) L. Guo, F. Song, S. Zhu, H. Li and L. Chu,
Nat. Commun., 2018, 9, 4543; (d) C. Zhu, H. Yue, B. Maity,
I. Atodiresei, L. Cavallo and M. Rueping, Nat. Catal., 2019, 2,
678–687; (e) J. J. Molloy, M. Schafer, M. Wienhold, T. Morack,
C. G. Daniliuc and R. Gilmour, Science, 2020, 369, 302–306.
Notes and references
1 (a) T. Kondo and T. A. Mitsudo Ta, Chem. Rev., 2000, 100, 3205–3220;
(b) G. Zhao and Z. S. Zhou, Bioorg. Med. Chem. Lett., 2001, 11,
2331–2335; (c) S. R. Dubbaka and P. Vogel, Angew. Chem., Int. Ed.,
2005, 44, 7674–7684; (d) D. A. Boyd, Angew. Chem., Int. Ed., 2016, 55,
¨
¨
15486–15502; (e) B. W. Wang, K. Jiang, J. X. Li, S. H. Luo, Z. Y. Wang 15 A. U. Meyer, S. Jager, D. Prasad-Hari and B. Konig, Adv. Synth. Catal.,
and H. F. Jiang, Angew. Chem., Int. Ed., 2020, 59, 2338–2343. 2015, 357, 2050–2054.
2 (a) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317, 16 N. A. Romero and D. A. Nicewicz, J. Am. Chem. Soc., 2014, 136,
1881–1886; (b) S. Purser, P. R. Moore, S. Swallow and V. 17024–17035.
Gouverneur, Chem. Soc. Rev., 2008, 37, 320–330; (c) S. Preshlock, 17 T. Lazarides, T. McCormick, P. Du, G. Luo, B. Lindley and
M. Tredwell and V. Gouverneur, Chem. Rev., 2016, 116, 719–766;
(d) N. A. Meanwell, J. Med. Chem., 2018, 61, 5822–5880.
3 G. Landelle, M. Bergeron, M. O. Turcotte-Savard and J. F. Paquin,
Chem. Soc. Rev., 2011, 40, 2867–2908.
R. Eisenberg, J. Am. Chem. Soc., 2009, 131, 9192–9194.
18 (a) J. Zhang, C. Xu, W. Wu and S. Cao, Chem. – Eur. J., 2016, 22,
9902–9908; (b) L.-F. Jiang, B.-T. Ren, B. Li, G.-Y. Zhang, Y. Peng,
Z.-Y. Guan and Q.-H. Deng, J. Org. Chem., 2019, 84, 6557–6564.
This journal is The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 2152À2155 | 2155