Synlett
Letter
(5) Davies, I. W.; Matty, L.; Hughes, D. L.; Reider, P. J. J. Am. Chem. Soc.
2001, 123, 10139.
(6) Bhunia, S.; Banerjee, B.; Bhaumik, A. Chem. Commun. 2015, 51,
5020.
(7) Kundu, S. K.; Singuru, R.; Hayashi, T.; Hijikata, Y.; Irle, S.; Mondal, J.
ChemistrySelect 2017, 2, 4705.
(8) Du, M.; Agrawal, A. M.; Chakraborty, S.; Garibay, S. J.; Limvorapitux,
R.; Choi, B.; Madrahimov, S. T.; Nguyen, S. T. ACS Sustain. Chem. Eng.
2019, 7, 8126.
diverse range of substrates and the desired product was
obtained in high yield. Due to its heterogeneity in the reaction
medium, the catalyst could be recycled for further use. The
catalyst was reused up to five reaction cycles without any
substantial decrease in its catalytic efficiency. The results
described here demonstrate the first-ever synthesis of
symmetrical TRAMs via a metal-free, dual C–C bond-breaking
strategy
using
sulfonated
tetraphenylethylene-based
(11) (a) Yao, X.; Li, C. J. J. Org. Chem. 2005, 70, 5752. (b) Li, H.; Li, W.;
Liu, W.; He, Z.; Li, Z. Angew. Chem. Int. Ed. 2011, 50, 2975. (c) Mahoney,
S. J.; Lou, T.; Bondarenko, G.; Fillion, E. Org. Lett. 2012, 14, 3474.(d)
Armstrong, E. L.; Grover, H. K.; Kerr, M. A. J. Org. Chem. 2013, 78,
10534. (e) Yang, Y.; Ni, F.; Shu, W. M.; Wu, A. X. Chem. Eur. J. 2014, 20,
11776. (f) Yao, Q.; Kong, L.; Wang, M.; Yuan, Y.; Sun, R.; Li, Y. Org. Lett.
2018, 20, 1744. (g) Yao, Q.; Kong, L.; Zhang, F.; Tao, X; Li, Y. Adv. Synth.
Catal. 2017, 359, 3079. (h) Cheng, X.; Zhou, Y.; Zhnag, F.; Zhu, K.; Liu,
Y.; Li, Y. Chem. Eur. J. 2016, 22, 12655. (i) Zhou, Y.; Tao, X.; Yao, Q.;
Zhao, Y.; Li, Y. Chem. Eur. J. 2016, 22, 17936.
hypercrosslinked polymer as a heterogeneous catalyst.
(12) Paul, D.; Khatua, S.; Chatterjee, P. N. New J. Chem. 2019, 43, 10056.
(13) (a) Esquivias, J.; Gomez Arrayas, R.; Carretero, J. C. Angew. Chem.
Int. Ed. 2006, 45,629. (b) Mondal, S.; Panda, G. RSC Adv. 2014, 4,
28317. (c) Yue, C.; Na, F.; Fang, X.; Cao, Y.; Antilla, J. C. Angew. Chem. Int.
Ed. 2018, 57, 11004. (d) Zhang, Z.; Wang, H.; Qiu, N.; Kong, Y.; Zeng, W.;
Zhang, Y.; Zhao, J. J. Org. Chem. 2018, 83, 8710.
(14) Lee, J. -S. M.; Briggs, M. E.; Hasell, T.; Copper, A. I. Adv. Mater.
2016, 28, 9804.
(15) (a) Nambo, M.; Crudden, C. M. ACS Catal. 2015, 5, 4734. (b)
Praveen, P. J.; Parameswaran, P. S.; Majik, M. S. Synthesis 2015, 47,
1827. (c) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z.
Chem. Rev. 2010, 110, 2250.
(16) Zeng, J. H.; Wang, Y. F.; Gou, S. Q.; Zhang, L. P.; Chen, Y.; Jiang, J. X.;
Shi, F. ACS Appl. Mater. Interfaces 2017, 9, 34783.
(17) The following unsymmetrical TRAM (via only Csp3–Csp3 bond
cleavage) was not isolated in the reaction.
Scheme 2: Plausible reaction mechanism for the reaction between 1a and 2a
catalyzed by THP-SO3H.
Funding Information
SERB is gratefully acknowledged for financial support to G. K. D. (grant
no. SB/FT/CS-075/2014) and P. N. C. (grant no. SB/FT/CS-115/2014).
Acknowledgment
(18). Luo, Y. -R.; Kerr, J. CRC Handbook of Chemistry and Physics 2012,
89, 89.
(19). (a) Thirupathi, P.; Soo Kim, S. J. Org. Chem. 2010, 75, 5240. (b)
Castellani, C. B.; Perotti, A.; Scrivanti, M.; Vidari, G. Tetrahedron 2000,
56, 8161.
We thank NIT Meghalaya for financial support to G. K., N. D. and D. P.
SAIF, NEHU; NMR Research Centre, IISc Bangalore; SAIC, TU; Centre for
Energy, IIT Guwahati; MSE, IIT Kanpur and SAIF, IIT Bombay are also
acknowledged for analytical facilities.
(20). Typical procedure for the synthesis of 3a
A 25 mL round-bottom flask equipped with a magnetic bar and water
condenser were charged with 1a (1.0 mmol), 2a (3.0 mmol), DCE (2.0
mL) and THP-SO3H (96 mg) in an air atmosphere. The flask was placed
in a constant temperature oil-bath at 80 °C and the progress of the
reaction was monitored by TLC. After 30 min, the mixture was filtered
to separate the catalyst and washed twice with DCE (2 x 5 mL). Then
the filtrate was removed under reduced pressure and the crude
product was purified by dry columnvacuum chromatography (silica
gel G, petroleum ether 60-80 °C/EtOAc) to give a yellow oily liquid;
yield: 94%.
1H NMR (400 MHz, CDCl3): δ (ppm) 2.158 (s, 6H), 5.256 (s, 1H), 5.788
(d, J = 3.2 Hz, 4H), 7.159–7.243 (m, 5H). 13C NMR (100 MHz, CDCl3): δ
(ppm) 13.65, 45.12, 106.08, 108.19, 126.97, 128.40, 128.44, 140.00,
151.46, 152.85.
Supporting Information
YES (this text will be updated with links prior to publication)
References and Notes
(1) (a) Guillerm, V.; Weseliński, Ł. J.; Alkordi, M.; Mohideen, M. I. H.;
Belmabkhout, Y.; Cairns, A. J.; Eddaoudi, M. Chem. Commun. 2014, 50,
1937. (b) Hao, S.; Liu, Y.; Shang, C.; Liang, Z.; Yu, J. Polym. Chem. 2017,
8, 1833. (c) Dawson, R.; Cooper, A. I.; Adams, D. J. Polym. Int. 2013, 62,
345.
(2) Zhang, Y.; Riduan, S. N. Chem. Soc. Rev. 2012, 41, 2083.
(3) Ahmed, D. S.; El-Hiti, G. A.; Yousif, E.; Ali, A. A.; Hameed, A. S. J.
Polym. Res. 2018, 25, 75.
(4) Huang, J.; Turner, S. R. Polym. Rev. 2018, 58, 1.
Template for SYNLETT © Thieme Stuttgart · New York
2020-10-01
page 4 of 4