catalyzed cyclization of thiobenzamides through a C-H
functionalization/C-S bond formation reaction.12 These
approaches suffer from some limitations such as the limited
diversity of the starting materials (routes a and c), multistep
synthesis especially utilizing the Lawesson’s reagent (routes
b, c, and d), the harsh reaction conditions (route a), and the
lack of regioselectivity and functional group tolerance (route
b). Although two elegant studies have been reported for the
preparation of 2-substituted benzothiazoles via route d, the
C-S bond formation via transition metal-catalyzed C-H
bond functionalization is still limited.13
trifluoromethylimidoyl chlorides with sodium hydrosulfide
hydrate by PdCl2 as the sole catalyst in DMSO via the
intermediate trifluoromethylthiobenzamides.
2,2,2-Trifluoro-N-phenylethanethioamide (2a), as the model
substrate, was treated with several different oxidants and
palladium sources to obtain the optimal reaction conditions,
which was readily prepared in excellent yield from the
reaction of 2,2,2-trifluoro-N-phenylacetimidoyl chloride (1a)
with sodium hydrosulfide hydrate in EtOH at room temper-
ature. As listed in Table 1, the product 2-trifluoromethyl-
It is well-known that regioselective replacement of hy-
drogen on an aromatic or heterocyclic system by a fluorine
atom or a fluoroalkyl group may have a profound influence
on the biological and physical properties of such a mol-
ecule.14 As part of our ongoing project to investigate new
synthetic methods for fluorine-containing heterocycles,15 we
attempted to develop a mild and efficient process for the
preparation of 2-trifluoromethylbenzothiazoles.16 Inspired by
the recent development of C-H bond functionalization17 and
the chemistry of trifluoromethylimidoyl halides as useful
building blocks in synthetic organofluorine chemistry,18
herein we wish to report a novel cascade synthesis of
2-trifluoromethylbenzothiazoles based on the reaction of the
Table 1. Optimization of Reaction Conditions
oxidant
(2 equiv)
temp
(degdC) yield (%)d
entry
catalyst (mol %)
1a
FeCl3
DDQ
PhI(OAc)2 rt or 80
rt
rt
3a/40
2a
4a/90
5a
3a/74
3a/73
3a/65
3a/16
3a/64
3a/43
3b/83
3b/82
2a
3a
4b
Cu(OTf)2 (20)
PdCl2 (10)
PdCl2(PPh3)2 (10)
PdCl2(CH3CN)2 (10)
Pd (OAc)2 (10)
PdCl2 (10)
PdCl2 (10)
PdCl2 (10)
PdCl2 (5)
140
110
110
110
110
110
110
110
110
5b
6b
(4) Delmas, F.; Avellaneda, A.; Di Giorgio, C.; Robin, M.; De Clercq,
E.; Timon-David, P.; Galy, J.-P. Eur. J. Med. Chem. 2004, 39, 685–690.
(5) Weekes, A. A.; Westwell, A. D. Curr. Med. Chem. 2009, 16, 2430–
2440.
7b
8b
9b
Cu(OAc)2
DDQ
(6) (a) Ben-Alloum, A.; Bakkas, S.; Soufiaoui, M. Tetrahedron Lett.
1997, 38, 6395–6396. (b) Bahrami, K.; Khodaei, M. M.; Naali, F. J. Org.
Chem. 2008, 73, 6835–6837. (c) Yao, S.; Schafer-Hales, K. J.; Belfield,
K. D. Org. Lett. 2007, 9, 5645–5648. (d) Praveen, C.; Kumar, K. H.;
Muralidharan, D.; Perumal, P. T. Tetrahedron 2008, 64, 2369–2374.
(7) (a) Jacobson, P. Chem. Ber. 1886, 19, 1067. (b) Shi, D.-F.; Bradshaw,
T. D.; Wrigley, S.; McCall, C. J.; Lelieveld, P.; Fichtner, I.; Stevens,
M. F. G. J. Med. Chem. 1996, 39, 3375–3384.
10b
11c
12c
a The reactions were carried out on a 0.4 mmol scale in CH2Cl2. b The
reactions were carried out on a 0.4 mmol scale in DMSO for 3 h.
c 2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidoyl chloride 1b reacted with
sodium hydrosulfide hydrate in DMSO at 50 °C for half an hour, followed
by addition of PdCl2 and elevated temperature to 110 °C; the mixture was
stirred for 3 h. d Isolated yields.
(8) Downer-Riley, N. K.; Jackson, Y. A. Tetrahedron 2008, 64, 7741–
7744.
(9) Bose, D. S.; Idrees, M. J. Org. Chem. 2006, 71, 8261–8263.
(10) (a) Bose, D. S.; Idrees, M. Tetrahedron Lett. 2007, 48, 669–672.
(b) Bose, D. S.; Idrees, M.; Srikanth, B. Synthesis 2007, 0819–0823.
(11) (a) Bened´ı, C.; Bravo, F.; Uriz, P.; Ferna´ndez, E.; Claver, C.;
Castillo´n, S. Tetrahedron Lett. 2003, 44, 6073–6077. (b) Evindar, G.; Batey,
R. A. J. Org. Chem. 2006, 71, 1802–1808. (c) Joyce, L. L.; Evindar, G.;
Batery, R. A. Chem. Commun. 2004, 446–447. (d) Ma, H. C.; Jiang, X. Z.
Synlett 2008, 1335–1340. (e) Murru, S.; Mondal, P.; Yella, R.; Patel, B. K.
Eur. J. Org. Chem. 2009, 2009, 5406–5413. (f) Shen, G.; Lv, X.; Bao, W.
Eur. J. Org. Chem. 2009, 2009, 5897–5901. (g) Ma, D.; Xie, S.; Xue, P.;
Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int. Ed. 2009, 48, 4222–
4225.
benzothiazole (3a) was obtained in 40% yield when stoichi-
ometric ferric chloride was used as the oxidant (entry 1).
Unfortunately, only the starting material 2a was recovered
when DDQ was employed (entry 2). Utilizing phenyliodi-
ne(III) diacetate (PIDA) as the oxidant, disulfide 4a was
detected as the main product (entry 3), while acetylamide
5a was formed when Cu(OTf)2 was used as the catalyst
(entry 4). After treatment of 2a under air atmosphere with
10 mol % PdCl2 in DMSO at 110 °C for 3 h, the desired
product 3a was obtained in 74% yield (entry 5). Other
(12) (a) Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008,
10, 5147–5150. (b) Joyce, L. L.; Batey, R. A. Org. Lett. 2009, 11, 2792–
2795.
(13) (a) Inamoto, K.; Arai, Y.; Hiroya, K.; Doi, T. Chem. Commun.
2008, 5529–5531. (b) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J. Q.
J. Am. Chem. Soc. 2006, 128, 6790–6791. (c) Zhao, X.; Dimitrijevic, E.;
Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466–3467.
(14) (a) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, Germany, 2004. (b) Harper, D. B.; O’Hagan, D. Nat. Prod. Rep.
1994, 11, 123–133. (c) Mu¨ller, K.; Faeh, C.; Diederich, F. Science 2007,
317, 1881–1886. (d) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432–
5446. (e) Be´gue´, J.-P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127,
992–1012.
(17) (a) Lyons, T. W.; Sanford, M. S. Chem. ReV. 2010, 110, 1147–
1169. (b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417–424. (c)
Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009,
48, 9792–9826. (d) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2009, 48, 5094–5115. (e) Daugulis, O.; Do, H.-Q.;
Shabashov, D. Acc. Chem. Res. 2009, 42, 1074–1086. (f) Mun˜iz, K. Angew.
Chem., Int. Ed. 2009, 48, 9412–9423. (g) Alberico, D.; Scott, M. E.; Lautens,
M. Chem. ReV. 2007, 107, 174–238. (h) Li, B.-J.; Yang, S.-D.; Shi, Z.-J.
Synlett 2008, 949–957.
(15) (a) Chen, Z. X.; Zhu, J. T.; Xie, H. B.; Li, S.; Wu, Y. M.; Gong,
Y. F. Chem. Commun. 2010, 46, 2145–2147. (b) Zhu, J. T.; Xie, H. B.;
Chen, Z. X.; Li, S.; Wu, Y. M. Synlett 2009, 3299–3302. (c) Zhu, J. T.;
Xie, H. B.; Chen, Z. X.; Li, S.; Wu, Y. M. Chem. Commun. 2009, 2338–
2340. (d) Wu, Y. M.; Li, Y.; Deng, J. J. Fluorine Chem. 2006, 127, 223–
228.
(18) (a) Uneyama, K. J. Fluorine Chem. 1999, 97, 11–25, and references
cited therein. (b) Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.;
Uneyama, K. J. Org. Chem. 1993, 58, 32–35. (c) Uneyama, K.; Amii, H.;
Katagiri, T.; Kobayashi, T.; Hosokawa, T. J. Fluorine Chem. 2005, 126,
165–171.
(16) (a) Ge, F.; Wang, Z.; Wan, W.; Lu, W.; Hao, J. Tetrahedron Lett.
2007, 48, 3251–3254. (b) Wang, Q.-F.; Mao, Y.-Y.; Zhu, S.-Z.; Hu, C.-M.
J. Fluorine Chem. 1999, 95, 141–143.
Org. Lett., Vol. 12, No. 10, 2010
2435