Published on Web 07/02/2010
Effective Click Construction of Bridged- and Spiro-Multicyclic
Polymer Topologies with Tailored Cyclic Prepolymers
(kyklo-Telechelics)
Naoto Sugai, Hiroyuki Heguri, Kengo Ohta, Qingyuan Meng, Takuya Yamamoto,
and Yasuyuki Tezuka*
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama,
Meguro-ku, Tokyo 152-8552, Japan
Received April 21, 2010; E-mail: ytezuka@o.cc.titech.ac.jp
Abstract: An alkyne-azide addition, i.e., click, reaction in conjunction with an electrostatic self-assembly
and covalent fixation (ESA-CF) process has been demonstrated to effectively construct a variety of
unprecedented multicyclic polymer topologies. A series of single cyclic poly(tetrahydrofuran), poly(THF),
precursors having an alkyne group (Ia), an azide group (Ib), two alkyne groups at the opposite positions
(Ic), and an alkyne group and an azide group at the opposite positions (Id) have been prepared by the
ESA-CF process. Moreover, a bicyclic 8-shaped precursor having two alkyne groups at the opposite positions
(Ie) was synthesized. The subsequent click reaction of Ia with linear (IIa) and three-armed star (IIb) telechelic
precursors having azide groups has been performed to construct bridged-type two-way (IIIa) and three-
way (IIIb) paddle-shaped polymer topologies, respectively. Likewise, spiro-type tandem tricyclic (IVa) and
tetracyclic (IVb) topologies resulted from Ib/Ic and Ib/Ie, respectively. Furthermore, three types of multicyclic
topologies that are composed of repeating ring (Va), alternating ring/linear (Vb), and alternating ring/star
(Vc) units have been synthesized from Id, Ic/IIa, and Ic/IIb, respectively.
Introduction
Remarkable progress has been made in the effective and
controlled synthesis of single cyclic polymers by employing
Topologically intriguing polymer architectures have been an
enduring synthetic challenge.1-4 Notably, the flexible confor-
mational motion of skeletal polymer segments between junctions
is relevant to the characteristic features of the topological
geometry.1 Cyclic and multicyclic polymers are particularly
unique from the topological viewpoint because of their absence
of chain termini in contrast to linear and branched counterparts.4
ring-expansion polymerization5 and end-to-end prepolymer
cyclization processes.6 By making use of novel cyclic polymers
having prescribed chemical structures, remarkable topology
effects have been revealed.7 Moreover, cyclic and other
topologically unique polymers have been demonstrated to be
versatile scaffolds to fabricate nano-objects of unusual shapes,
extending the scope of nanoscience and nanotechnologies
beyond DNA-based processes.8
(1) (a) When topology meets chemistry. A topological look at molecular
chirality; Flapan, E., Ed.; Cambridge University Press: Cambridge,
2000. (b) Walba, D. M. Tetrahedron 1985, 41, 3161–3212. (c)
Chambron, J. C.; Dietrich-Buchecker, C.; Sauvage, J. P. Top. Curr.
Chem. 1993, 165, 131–162. (d) Seeman, N. C. Mol. Biotechnol. 2007,
37, 246–257. (e) Tezuka, Y.; Oike, H. J. Am. Chem. Soc. 2001, 123,
11570–11576. (f) Tezuka, Y. Topology Designing; NTS: Tokyo, 2009;
pp 3-10.
Multicyclic polymer topologies, divided into catenated
(mechanically linked) and bonded (covalently linked) types
based on the connecting mode of the ring units, have also
been attractive synthetic targets. As observed in DNA
systems, including mitochondrial components9 and virus
capsids,10 catenated topologies are inspiring. A number of
(2) (a) Fenlon, E. E. Nat. Chem. 2010, 2, 156–157. (b) Molecular
catenanes, rotaxanes and knots; Sauvage, J.-P., Dietrich-Buchecker,
C., Eds.; Wiley-VCH: Weinheim, 1999.
(5) For recent examples, see: (a) Bielawski, C. W.; Benitez, D.; Grubbs,
R. H. Science 2002, 297, 2041–2044. (b) Bielawski, C. W.; Benitez,
D.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 8424–8425. (c)
Boydston, A. J.; Xia, Y.; Kornfield, J. A.; Gorodetskaya, I. A.; Grubbs,
R. H. J. Am. Chem. Soc. 2008, 130, 12775–12782. (d) Xia, Y.; Boydston,
A. J.; Gorodetskaya, I. A.; Kornfield, J. A.; Grubbs, R. H. J. Am. Chem.
Soc. 2009, 131, 2670–2677. (e) Kudo, H.; Sato, M.; Wakai, R.; Iwamoto,
T.; Nishikubo, T. Macromolecules 2008, 41, 521–523. (f) Culkin, D. A.;
Jeong, W.; Csihony, S.; Gomez, E. D.; Balsara, N. P.; Hedrick, J. L.;
Waymouth, R. M. Angew. Chem., Int. Ed. 2007, 46, 2627–2630. (g)
Jeong, W.; Hedrick, J. L.; Waymouth, R. M. J. Am. Chem. Soc. 2007,
129, 8414–8415. (h) Jeong, W.; Shin, E. J.; Culkin, D. A.; Hedrick,
J. L.; Waymouth, R. M. J. Am. Chem. Soc. 2009, 131, 4884–4891. (i)
Guo, L.; Zhang, D. J. Am. Chem. Soc. 2009, 131, 18072–18074. (j)
Herbert, D. E.; Gilroy, J. B.; Chan, W. Y.; Chabanne, L.; Staubitz, A.;
Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2009, 131, 14958–14968.
(k) Zhang, F.; Go¨tz, G.; Winkler, H. D. F.; Schalley, C. A.; Ba¨uerle, P.
Angew. Chem., Int. Ed. 2009, 48, 6632–6635.
(3) For branched polymer topologies, see: (a) Hadjichristidis, N.; Iatrou,
H.; Pitsikalis, M.; Mays, J. Prog. Polym. Sci. 2006, 31, 1068–1132.
(b) Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. ReV.
2001, 101, 3747–3792. (c) Hirao, A.; Watanabe, T.; Ishizu, K.; Ree,
M.; Jin, S.; Jin, K. S.; Deffieux, A.; Schappacher, M.; Carlott, S.
Macromolecules 2009, 42, 682–693. (d) Hirao, A.; Hayashi, M.;
Loykulnant, S.; Sugiyama, K.; Ryu, S. W.; Haraguchi, N.; Matsuo,
A.; Higashihara, T. Prog. Polym. Sci. 2005, 30, 111–182. (e)
Tsarevsky, N. V.; Matyjasewski, K. Chem. ReV. 2007, 107, 2270–
2299.
(4) For cyclic polymer topologies, see: (a) Cyclic Polymers, 2nd ed.;
Semlyen, J. A., Kluwer: Dordrecht, 2001. (b) Endo, K. AdV. Polym.
Sci. 2008, 217, 121–184. (c) Grayson, S. M. Nat. Chem. 2009, 1, 178–
179. (d) Laurent, B. A.; Grayson, S. M. Chem. Soc. ReV. 2009, 38,
2202–2213. (e) Kricheldorf, H. R. J. Polym. Sci., Part A: Polym. Chem.
2010, 48, 251–284. (f) Adachi, K.; Tezuka, Y. J. Synth. Org. Chem
Jpn. 2009, 67, 1136–1143.
9
14790 J. AM. CHEM. SOC. 2010, 132, 14790–14802
10.1021/ja103402c 2010 American Chemical Society