A R T I C L E S
Weiss and Marks
employed organo-Th(IV) and organo-U(IV) complexes.11 While
some late transition metal catalysts exhibit high activity,
achieving high Markovnikov selectivity still presents a chal-
lenge, with the exception of Pd, as does competing isomerization
of the alkene product,13a double-thiolation products,5j and
product insertion into a second alkyne.5j,15 Furthermore, while
some late transition metal complexes effect efficient alkyne
hydrothiolation with benzyl and aryl thiols, few mediate
hydrothiolation with the less reactive aliphatic thiols.5c,d,i,m
Actinide complexes have demonstrated impressive hydrothi-
olation selectivity and the ability to utilize aliphatic thiols (e.g.,
eq 2);11 however the non-negligible radioactivity may render
them undesirable for large-scale use. Previous work with
rhodium catalysts demonstrated the ability to utilize both
terminal and internal alkynes with selectivity typically favoring
the linear (E) anti-Markovnikov products (e.g., eq 3)5c with the
exception of Tp*Rh(PPh3)2 where Markovnikov vinyl sulfides
are selectivey produced.5m Studies on group 10 metals find that
nickel (e.g., eq 4)5l and palladium (e.g., eq 5)5i catalysts favor
the Markovnikov product.
tion2a,5,8,11 been investigated in detail due to the historic
reputation of sulfur as a catalyst poison,5o,12 reflecting its high
affinity for ‘soft’ transition metal centers.13
Interest in homogeneous, catalytic alkyne hydrothiolation over
the past few years has yielded a number of metal complexes
competent to effect this transformation using late transition
metal2a,5,8b,14 and actinide11 catalysts. Late transition metal
catalysts include Rh,2a,5c,e,m,6,8b,14a Ir,8b Ni,5b,g,h,j-l,n Pd,5b,g,i,14
Pt,5g and Au5a complexes while actinide investigations have
(6) Misumi, Y.; Seino, H.; Mizobe, Y. J. Organomet. Chem. 2006, 691,
3157–3164.
(7) (a) Hartwig, J. F. Nature 2008, 455, 314–322. (b) Andrea, T.; Eisen,
M. S. Chem. Soc. ReV. 2008, 37, 550–567. (c) Alonso, F.; Beletskaya,
I. P.; Yus, M. Chem. ReV. 2004, 104, 3079–3160. (d) Togni, A.;
Grutzmacher, H.-J. Catalytic Heterofunctionalization; Wiley-VCH:
New York, 2001.
(8) (a) Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am.
Chem. Soc. 2009, 131, 18246–18247. (b) Field, L. D.; Messerle, B. A.;
Vuong, K. Q.; Turner, P. Dalton Trans. 2009, 3599–3614. (c)
Reznichenko, A. L.; Hampel, F.; Hultzsch, K. C. Chem.sEur. J. 2009,
15, 12819–12827. (d) Mu¨ller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo,
F.; Tada, M. Chem. ReV. 2008, 108, 3795–3892. (e) Munro-Leighton,
C.; Delp, S. A.; Alsop, N. M.; Blue, E. D.; Gunnoe, T. B. Chem.
Commun. 2008, 111–113. (f) Smolensky, E.; Kapon, M.; Eisen, M. S.
Organometallics 2007, 26, 4510–4527. (g) Motta, A.; Fragala`, I. L.;
Marks, T. J. Organometallics 2006, 25, 5533–5539. (h) Hong, S.;
Marks, T. J. Acc. Chem. Res. 2004, 37, 673–686. (i) Motta, A.; Lanza,
G.; Fragala, I. L.; Marks, T. J. Organometallics 2004, 23, 4097–4104.
(j) Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125,
12584–12605. (k) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am.
Chem. Soc. 2003, 125, 11956–11963. (l) Ryu, J. S.; Li, G. Y.; Marks,
T. J. J. Am. Chem. Soc. 2003, 125, 12584–12605. (m) Arredondo,
V. M.; McDonald, F. E.; Marks, T. J. Organometallics 1999, 18, 1949–
1960. (n) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem.
Soc. 1992, 114, 1708–1719.
Available mechanistic data for late transition metal- and
organoactinide-mediated hydrothiolation complexes are consis-
tent with pathways in which the alkyne undergoes insertion into
either a metal-hydride or metal-thiolate bond.5c,h,j,11,14a The
accepted hydride pathway for most Rh complexes5c,14a is
initiated by π-coordination/activation of the acetylene to/by the
metal-hydride complex (Scheme 1A, step i), followed by
alkyne insertion into the Rh-H bond (Scheme 1A, step ii).
Finally, regeneration of the catalyst occurs through reductive
elimination of product followed by RS-H oxidative addition
to the metal center (Scheme 1A, step iii). Rhodium complexes
selectively yield E anti-Markovnikov products as a result of
the hydride insertion regiochemistry. In contrast, Pd,5h,14a Ni,5h,j
and Th11 complexes are proposed to effect hydrothiolation via
acetylene insertion into the metal-thiolate bond (Scheme 1B,
step i) followed by thiol-mediated displacement of product from
the metal center (Scheme 1B, step ii), resulting in Markovnikov
selectivity.
(9) (a) Perrier, A.; Comte, V.; Mo¨ıse, C.; Le Gendre, P. Chem.sEur. J.
2009, 16, 64–67. (b) Nagata, S.; Kawaguchi, S.-i.; Matsumoto, M.;
Kamiya, I.; Nomoto, A.; Sonoda, M.; Ogawa, A. Tetrahedron Lett.
2007, 48, 6637–6640. (c) Motta, A.; Fragala`, I. L.; Marks, T. J.
Organometallics 2005, 24, 4995–5003. (d) Sadow, A. D.; Haller, I.;
Fadini, L.; Togni, A. J. Am. Chem. Soc. 2004, 126, 14704–14705. (e)
Takaki, K.; Koshoji, G.; Komeyama, K.; Takeda, M.; Shishido, T.;
Kitani, A.; Takehira, K. J. Org. Chem. 2003, 68, 6554–6565. (f)
Kawaoka, A. M.; Douglass, M. R.; Marks, T. J. Organometallics 2003,
22, 4630–4632. (g) Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am.
Chem. Soc. 2001, 123, 10221–10238. (h) Douglass, M. R.; Marks,
T. J. J. Am. Chem. Soc. 2000, 122, 1824–1825. (i) Wicht, D. K.;
Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am.
Chem. Soc. 1997, 119, 5039–5040.
(10) (a) Dzudza, A.; Mark, T. J. Chem.sEur. J. 2010, 16, 3403–3422. (b)
Motta, A.; Fragala`, I. L.; Marks, T. J. Organometallics 2010, 29, 2004–
2012. (c) Nishina, N.; Yamamoto, Y. Tetrahedron 2009, 65, 1799–
1808. (d) Janini, T. E.; Rakosi, R. I.; Durr, C. B.; Bertke, J. A.; Bunge,
S. D. Dalton Trans. 2009, 10601–10608. (e) Dzudza, A.; Marks, T. J.
Org. Lett. 2009, 11, 1523–1526. (f) Cui, D.-M.; Yu, K.-R.; Zhang, C.
Synlett 2009, 7, 1103–1106. (g) Seo, S.; Yu, X.; Marks, T. J. J. Am.
Chem. Soc. 2009, 131, 263–276. (h) Nishina, N.; Yamamoto, Y.
Tetrahedron Lett. 2008, 49, 4908–4911. (i) Zhang, Z.; Widenhoefer,
R. A. Org. Lett. 2008, 10, 2079–2081. (j) Harkat, H.; Weibel, J.-M.;
Pale, P. Tetrahedron Lett. 2007, 48, 1439–1442. (k) Yu, X.; Seo, S.;
Marks, T. J. J. Am. Chem. Soc. 2007, 129, 7244–7245. (l) Zhang, Z.;
Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am.
Chem. Soc. 2006, 128, 9066–9073. (m) Yang, C. G.; Reich, N. W.;
Shi, Z.; He, C. Org. Lett. 2005, 7, 4553–4556. (n) Qian, H.; Han, X.;
Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536–9537.
(11) Weiss, C. J.; Wobser, S. D.; Marks, T. J. J. Am. Chem. Soc. 2009,
131, 2062–2063.
The recently communicated activity of organoactinides for
alkyne hydrothiolation11 and the efficacy of inexpensive orga-
nozirconium complexes16 for formally analogous hydroamina-
tion processes8a,f,k,m,17 raises the question as to whether, and
with what activity and selectivity, zirconium(IV) complexes
(13) (a) Stephan, D. W.; Nadasdi, T. T. Coord. Chem. ReV. 1996, 147,
147–208. (b) Krebs, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1991,
30, 769–788.
(14) (a) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc.
1999, 121, 5108–5114. (b) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu,
I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 5902–5903.
(15) After the insertion of alkyne into the Pd-SR bond (Scheme 1B, step
i), the insertion of a second alkyne into the Pd-vinyl bond occurs
instead of the release of product from the metal center (Scheme 1B,
step ii) resulting in a diene sulfide.
(12) Hegedus, L. L.; McCabe, R. W. Chemical Industries Series, Vol. 17:
Catalyst Poisoning; 1984.
9
10534 J. AM. CHEM. SOC. VOL. 132, NO. 30, 2010