Published on Web 07/22/2010
Self-Assembly of Hybrid Dendrons into Doubly Segregated
Supramolecular Polyhedral Columns and Vesicles
Mihai Peterca,†,‡ Mohammad R. Imam,†,§ Pawaret Leowanawat,† Brad M. Rosen,†
Daniela A. Wilson,† Christopher J. Wilson,† Xiangbing Zeng,| Goran Ungar,|
Paul A. Heiney,‡ and Virgil Percec*,†
Roy & Diana Vagelos Laboratories, Department of Chemistry, and Department of Physics and
Astronomy, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104, and Department of
Engineering Materials, UniVersity of Sheffield, Sheffield S1 3JD, United Kingdom
Received May 21, 2010; E-mail: percec@sas.upenn.edu
Abstract: The synthesis and structural analysis of supramolecular dendrimers self-assembled from 3 libraries
containing 20 first-generation hybrid dendrons are reported. Combinations of benzyl ether, naphthyl methyl
ether, and biphenyl methyl ether repeat units with different alkyl carboxylates at the apex of the dendron
decreased its molecular solid angle to values that led to the discovery of a new mechanism of self-assembly.
This new self-assembly mechanism generated a diversity of unprecedented supramolecular assemblies, including
hollow and nonhollow singly or doubly segregated supramolecular columns and vesicles exhibiting polyhedral
shapes. The polyhedral shape of the self-organized supramolecular dendrimers was demonstrated to be an
intrinsic characteristic of all the doubly segregated structures. The self-assembly mechanism elucidated here
provides access to new strategies that will be used to fabricate complex supramolecular organizations.
1. Introduction
are monodisperse macromolecules that form a variety of
complex periodic or quasi-periodic spatial organizations.5 These
organizations are determined by their specific primary structure
and are dependent on the environmental conditions. Self-
assembling dendritic structures have impacted the field of
supramolecular nanoscience6 with applications ranging from
supramolecular capsules,7 vesicles,8 porous protein mimics,9 and
ion channels10 to molecular actuators11 and organic electronic
materials.12 Establishing general principles that correlate the
dendritic primary structure with the resulting supramolecular
structure in the self-organized state is essential not only for the
design of building blocks that provide new functions, but also
Self-assembling dendrons1 and dendrimers,2 synthesized via
iterative convergent,3 divergent,4 or combined methodologies,
† Department of Chemistry, University of Pennsylvania.
‡ Department of Physics and Astronomy, University of Pennsylvania.
§ Current address: Department of Chemistry, King Fahd University of
Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| University of Sheffield.
(1) (a) Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G.
J. Am. Chem. Soc. 1997, 119, 1539–1555. (b) Percec, V.; Cho, W. D.;
Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 2001, 123, 1302–
1315. (c) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am.
Chem. Soc. 2002, 123, 4105–4106. (d) Percec, V.; Mitchell, C. M.;
Cho, W. D.; Uchida, S.; Glodde, M.; Ungar, G.; Zeng, X. B.; Liu,
Y. S.; Balagurusamy, V. S. K.; Heiney, P. A. J. Am. Chem. Soc. 2004,
126, 6078–6094. (e) Kim, J. K.; Hong, M. K.; Ahn, J. H.; Lee, M.
Angew. Chem., Int. Ed. 2005, 44, 328–332. (f) Sakai, N.; Kamikawa,
Y.; Nishii, M.; Matsuoka, T.; Kato, T.; Matile, S. J. Am. Chem. Soc.
2006, 128, 2218–2219. (g) Percec, V.; Peterca, M.; Sienkowska, M. J.;
Ilies, M. A.; Aqad, E.; Smidrkal, J.; Heiney, P. A. J. Am. Chem. Soc.
2006, 128, 3324–3334. (h) Percec, V.; Holerca, M. N.; Nummelin,
S.; Morrison, J. L.; Glodde, M.; Smidrkal, J.; Peterca, M.; Rosen,
B. M.; Uchida, S.; Balagurusamy, V. S. K.; Sienkowska, M. J.; Heiney,
P. A. Chem.sEur. J. 2006, 12, 6216–6241. (i) Percec, V.; Won, B. C.;
Peterca, M.; Heiney, P. A. J. Am. Chem. Soc. 2007, 129, 11265–11278.
(j) Zhang, X.; Chen, Z.; Wu¨rthner, F. J. Am. Chem. Soc. 2007, 129,
4886–4887. (k) Gehringer, L.; Bourgogne, C.; Guillon, D.; Donnio,
B. J. Am. Chem. Soc. 2004, 126, 3856–3867. (l) Cook, A. G.;
Baumeister, U.; Tschierske, C. J. Mater. Chem. 2005, 15, 1708–1721.
(m) Bury, I.; Heinrich, B.; Bourgogne, C.; Guillon, D.; Donnio, B.
Chem.sEur. J. 2006, 12, 8396–8413. (n) Lehmann, M.; Jahr, M.
Chem. Mater. 2008, 20, 5453–5456. (o) Lee, M.; Jeong, Y. S.; Cho,
B. K.; Oh, N. K.; Zin, W. C. Chem.sEur. J. 2002, 8, 876–883. (p)
Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U. Science 2004, 305,
1598–1601. (q) Peterca, M.; Percec, V.; Imam, M. R.; Leowanawat,
P.; Morimitsu, K.; Heiney, P. A. J. Am. Chem. Soc. 2008, 130, 14840–
14852. (r) Dukeson, D. R.; Ungar, G.; Balagurusamy, V. S. K.; Percec,
V.; Johansson, G. A.; Glodde, M. J. Am. Chem. Soc. 2003, 125, 15974–
15980. (s) Percec, V.; Peterca, M.; Tsuda, Y.; Rosen, B. M.; Uchida,
S.; Imam, M. R.; Ungar, G.; Heiney, P. A. Chem.sEur. J. 2009, 15,
8994–9004. (t) Percec, V.; Rudick, J. G.; Peterca, M.; Yurchenko,
M. E.; Smidrkal, J.; Heiney, P. A. Chem.sEur. J. 2008, 14, 3355–
3362.
(2) (a) Fre´chet, J. M. J., Tomalia, D. A., Eds. Dendrimers and Other
Dendritic Polymers; Wiley: New York, 2001. (b) Newkome, G. R.;
Moorefield, C. N.; Vo¨gtle, F. Dendrimers and Dendrons; Wiley-VCH:
Weinheim, Germany, 2001. (c) Vo¨gtle, F.; Richardt, G.; Werner, N.
Dendrimer Chemistry; Wiley-VCH: Weinheim, Germany, 2009.
(3) (a) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112,
7638–7647. (b) Miller, T. M.; Neenan, T. X. Chem. Mater. 1990, 2,
346–349. (c) Grayson, S. M.; Fre´chet, J. M. J. Chem. ReV. 2001, 101,
3819–3868.
(4) (a) Buhleier, E.; Wehner, W.; Vo¨gtle, F. Synthesis 1978, 15, 5–158.
(b) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin,
S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117–132. (c)
Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem.
1985, 50, 2003–2004.
(5) Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.;
Percec, V. Chem. ReV. 2009, 109, 6275–6540.
(6) For selected reviews on supramolecular liquid crystalline dendrimers
see: (a) Moore, J. S. Acc. Chem. Res. 1997, 30, 402–413. (b)
Ponomarenko, S. A.; Boiko, N. I.; Shibaev, V. P. Polym. Sci., Ser. C
2001, 43, 1–45. (c) Donnio, B.; Guillon, D. AdV. Poylm. Sci. 2006,
201, 45–155. (d) Caminade, A. M.; Turrin, C. O.; Sutra, P.; Majoral,
J. P. Curr. Opin. Colloid Interface Sci. 2003, 8, 282–295. (e)
Deschenaux, R.; Donnio, B.; Guillon, D. New J. Chem. 2007, 31,
1064–1073. (f) Marcos, M.; Martin-Rapun, R.; Omenat, A.; Serrano,
J. L. Chem. Soc. ReV. 2007, 36, 1889–1901. (g) Rudick, J. G.; Percec,
V. Acc. Chem. Res. 2008, 41, 1641–1652. (h) Rudick, J. G.; Percec,
V. New J. Chem. 2007, 31, 1083–1096. (i) Ungar, G.; Zeng, X. B.
Soft Matter 2005, 1, 95–106.
9
11288 J. AM. CHEM. SOC. 2010, 132, 11288–11305
10.1021/ja104432d 2010 American Chemical Society