2420
C. Li et al. / Journal of Organometallic Chemistry 694 (2009) 2415–2420
The dimmer, the ancillary ligand (1 mmol) and Na2CO3 (0.3 g) were
dissolved in 2-ethoxyethanol (8 mL) and the mixture was stirred
under N2 at 120 °C for 10 h. After cooled to room temperature,
the precipitate was filtered and washed with water, ethanol and
acetone. The crude product was flash chromatographed on silica
gel using CH2Cl2 as eluent to afford the desired Ir(III) complex.
Ir(FFBI)2(pmp): Yield 65%.1H NMR (CDCl3, 400 MHz) d: 8.07 (d,
J = 7.9 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.41–7.44 (m, 2H), 7.32–
7.36 (m, 4H), 7.21–7.23 (m, 2H), 7.14–7.16 (m, 3H), 7.02–7.07
(m, 7H), 6.87–6.89 (m, 3H), 6.23–6.38 (m, 5H), 6.00–6.07 (m,
2H), 5.99 (s, 2H), 5.53–5.64 (m, 4H). MS (ESI) m/z: 1027.0 (M+).
Anal. Calc. for C53H36F4IrN5O: C, 61.98; H, 3.53; N, 6.82. Found: C,
62.12; H, 3.61; N, 6.73%. IR (KBr, cmꢁ1): 2924 (w), 2344 (w),
16079 (s), 1561 (m), 1510 (m), 1463 (m), 1433 (m), 1354 (w),
1279 (w), 1254 (w), 1230 (w), 1190 (m), 1168 (w), 1125 (w), 825
(w), 697 (w).
Acknowledgement
Financial supports from the National Natural Science Founda-
tion of China (Project Nos. 20772057 and 20773066) are gratefully
acknowledged.
References
[1] M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R.
Forrest, Nature 395 (1998) 151.
[2] M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature 403 (2000) 750.
[3] S. Lamansky, P. Djarovich, D. Murphy, F.A. Razzaq, R. Kwong, I. Tsyba, M. Bortz,
B. Mui, R. Bau, M.E. Thompson, J. Am. Chem. Soc. 123 (2001) 4304.
[4] J.P. Duan, P.P. Sun, C.H. Cheng, Adv. Mater. 15 (2003) 224.
[5] Y.L. Tung, S.W. Lee, Y. Chi, Y.T. Tao, C.H. Chien, Y.M. Cheng, P.T. Chou, S.M. Peng,
C.S. Liu, J. Mater. Chem. 15 (2005) 460.
[6] H. Xia, Y.Y. Zhu, D. Lu, M. Li, C.B. Zhang, B. Yang, Y.G. Ma, J. Phys. Chem. B 110
(2006) 18718.
Ir(FFBI)2(pti): Yield 58%. 1H NMR (CDCl3, 400 MHz) d: 7.85 (d,
J = 5.4 Hz, 1H), 7.65–7.68 (m, 2H), 7.44–7.46 (m, 2H), 7.22–7.25
(m, 2H), 7.14–7.17 (m, 3H), 7.03–7.07 (m, 8H), 6.85–6.91 (m,
2H), 6.09–6.13 (m, 2H), 6.05–6.09 (m, 2H), 5.93–6.01 (m, 2H),
5.55–5.68 (m, 4H), 2.73–2.91 (m, 4H), 1.78–1.81 (m, 4H). MS
(ESI) m/z: 1029.1 (M+). Anal. Calc. for C52H38F4IrN7: C, 60.69; H,
3.72; N, 9.53. Found: C, 60.83; H, 3.58; N 9.61%. IR (KBr, cmꢁ1):
2929 (w), 2368 (w) 1602 (m), 1599 (m), 1506 (m), 1462 (s), 1279
(w), 1229 (w), 1190 (w), 1163 (w), 868 (w), 822 (w), 748 (w).
[7] V.V. Grushin, N. Herron, D.D. LeCloux, W.J. Marshall, V.A. Petrov, Y. Wang,
Chem. Commun. (2001) 1494.
[8] S. Okada, K. Okinaka, H. Iwawaki, M. Furugori, M. Hashimoto, T. Mukaide, J.
Kamatani, S. Igawa, A. Tsuboyama, T. Takiguchi, K. Ueno, Dalton Trans. (2005)
1583.
[9] D.K. Rayabarapu, B.M.J.S. Paulose, J.P. Duan, C.H. Cheng, Adv. Mater. 17 (2005)
349.
[10] I. Avilov, P. Minoofar, J. Cornil, L.D. Cola, J. Am. Chem. Soc. 129 (2007) 8247.
[11] J.W. Hu, G.H. Zhang, H.H. Shih, X.Q. Jiang, P.P. Sun, C.H. Cheng, J. Organomet.
Chem. 693 (2008) 2798.
[12] J. Li, P.I. Djurovich, B.D. Alleyne, M. Yousufuddin, N.N. Ho, J.C. Thomas, J.C.
Peters, R. Bau, M.E. Thompson, Inorg. Chem. 44 (2005) 1713.
[13] L.Q. Chen, H. You, C.L. Yang, D.G. Ma, J.G. Qin, Chem. Commun. (2007) 1352.
[14] C.J. Chang, C.H. Yang, K. Chen, Y. Chi, C.F. Shu, M.L. Ho, Y.S. Yeh, P.T. Chou,
Dalton Trans. (2007) 1881.
4.4. OLED fabrication
[15] C.X. Li, J.W. Hu, P.P. Sun, Y. Pan, C.H. Cheng, Chin. J. Inorg. Chem. 23 (2007)
392.
[16] P.P. Sun, Z.X. Hu, J. Heterocyclic Chem. 43 (2006) 773.
[17] P.C. Wu, J.K. Yu, Y.H. Song, Y. Chi, P.T. Chou, S.M. Peng, G.H. Lee,
Organometallics 22 (2003) 4938.
[18] M. Nonoyama, Bull. Chem. Soc. Jpn. 47 (1974) 767.
[19] F.I. Wu, H.J. Su, C.F. Shu, L. Luo, W.G. Diau, C.H. Cheng, J.P. Duan, G.H. Lee, J.
Mater. Chem. 15 (2005) 1035.
The complexes were sublimated at 300–320 °C and 4 ꢀ 10ꢁ3 Pa
before use. The device was fabricated by vacuum deposition of the
materials at 1.3 ꢀ 10ꢁ4 Pa onto a clean glass pre-coated with a
layer of indium tin oxide with a sheet resistance of 25
X .
hꢁ1
The deposition rate for the organic compounds was 0.1–
0.2 nm sꢁ1.The cathode of LiF/Al was deposited by first evaporating
LiF at a deposition rate of 0.01 nm sꢁ1 and then evaporating alumi-
[20] P.J. Hay, J. Phys. Chem. A 106 (2002) 1634.
[21] J.J. Lin, W.S. Liao, H.J. Huang, F.I. Wu, C.H. Cheng, Adv. Funct. Mater. 18 (2008)
485.
num at a rate of 0.1–0.2 nm sꢁ1
.