strategies are limited by a narrow substrate scope, low-
yielding protocols, arduous routes, or the use of highly toxic
reagents (e.g., tin or selenium). Few methods exist for the
synthesis of tertiary C3 reverse-prenylated oxindole scaf-
folds.8 Although the corresponding C3 hydroxy product has
been obtained in good yields, additional steps are required
for the construction of complex and diverse C3 quaternary
centers.
With the broad goal of synthesis and evaluation of
biological activity for a series of C3 reverse-prenylated
oxindoles and 2,2-dimethyl indenes, herein we report an
elegant branch-selective syntheses of C3 tertiary oxindoles
6a-e and indene 7 from the key intermediates 5a-l simply
by switching the transition metal catalyst for the correspond-
ing coupling reactions (Scheme 1). Furthermore, the repre-
Figure 1. Representative examples with the highlighted portion
showing a C3 reverse-prenyl scaffold in a prominent or in a cryptic
fashion.
Scheme 1. Divergent Synthetic Route to Reverse-Prenylated
Oxindole (6a-e) and Indene (7) Scaffolds
indene scaffold has been found in selective inhibitors of
aldosterone synthase5 and a series of serotonin receptor
agonists.6
Oxindole derivatives containing a reverse prenyl group at
C3 are challenging synthetic targets. Several approaches have
been developed for the construction of reverse-prenylated
quaternary C3 centers.7 Despite the fact that some of them
were applied to the syntheses of natural products, these
(5) Uimschneider, S.; Muller-Vieira, U.; Klein, C. D.; Antes, I.;
Lengauer, T.; Hartmann, R. W. J. Med. Chem. 2005, 48, 1563.
(6) Alcalde, E.; Mesquida, N.; Lopez-Perez, S.; Frigola, J.; Merce, R.
J. Med. Chem. 2009, 52, 675.
(7) For the construction of reverse-prenylated quaternary C3 centers,
see the following. (a) Olefination followed by a tandem isomerization-Claisen
rearrangement process: Kawasaki, T.; Terashima, R.; Sakaguchi, K.;
Sekiguchi, H.; Sakamoto, M. Tetrahedron Lett. 1996, 37, 7525. (b)
Kawasaki, T.; Nagaoka, M.; Satoh, T.; Okamoto, A.; Ukon, R.; Ogawa, A.
Tetrahedron 2004, 60, 3493. (c) Kawasaki, T.; Shinada, M.; Kamimura,
D.; Ohzono, M.; Ogawa, A. Chem.Commun. 2006, 420. (d) Kawasaki, T.;
Shinada, M.; Kamimura, D.; Ohzono, M.; Ogawa, A.; Terashima, R.;
Sakamoto, M. J. Org. Chem. 2008, 73, 5959. (e) Preactivation of
C3-substituted indoles with N-(phenylseleno)phthalimide followed by
reaction with prenyl tributylstannane: Marsden, S.; Depew, K.; Danishefsky,
S. J. J. Am. Chem. Soc. 1994, 116, 11143. (f) Depew, K.; Marsden, S.;
Zatorska, D.; Zatorski, A.; Bornmann, W.; Danishefsky, S. J. J. Am. Chem.
Soc. 1999, 121, 11953. (g) Chen, W.-C.; Joulie, M. M. Tetrahedron Lett.
1998, 39, 8401. (h) Schiavi, B.; Richard, D. J.; Joulie, M. M. J. Org. Chem.
2002, 67, 620. (i) Richard, D. J.; Schiavi, B.; Joulie, M. M. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 11971. (j) Shangguan, N.; Hehre, W. J.;
Ohlinger, W. S.; Beavers, M. P.; Joulie, M. M. J. Am. Chem. Soc. 2008,
130, 6281. (k) Preactivation of C3-substituted indoles with NBS followed
by reaction with prenyl tributylstannane: Fuchs, J. R.; Funk, R. L. Org.
Lett. 2005, 7, 677. (l) Thio-Claisen rearrangement of 2-prenyl thioindole:
Bycroft, B.; Landon, W. Chem.Commun. 1970, 168. (m) Takase, S.; Iwami,
M.; Ando, T.; Okamoto, M.; Yoshida, K.; Horiai, H.; Kohsaka, M.; Aoki,
H.; Imanaka, H. J. Antibiot. 1984, 37, 1320. (n) Takase, S.; Itoh, Y.; Uchida,
I.; Tanaka, H.; Aoki, H. Tetrahedron Lett. 1985, 847. (o) Takase, S.; Itoh,
Y.; Uchida, I.; Tanaka, H.; Aoki, H. Tetrahedron 1986, 42, 5887. (p) Takase,
S.; Uchida, I.; Tanaka, H.; Aoki, H. Tetrahedron 1986, 42, 5879. (q) Bhat,
B.; Harrison, D. Tetrahedron Lett. 1986, 27, 5873. (r) Bhat, B.; Harrison,
D.; Lamony, H. Tetrahedron 1993, 49, 10663. (s) Bhat, B.; Harrison, D.
Tetrahedron 1993, 49, 10655. (t) Grignard reaction of an activated indoline
with prenyl magnesium bromide: Morales-Rios, M.; Suarez-Castillo, O.;
Joseph-Nathan, P. J. Org. Chem. 1999, 64, 1086. (u) Morales-Rios, M.;
Suarez-Castillo, O.; Trujillo-Serrato, J.; Joseph-Nathan, P. J. Org. Chem.
2001, 66, 1186. (v) Addition of prenyl alcohol to 3-chloro iminium ion
followed by Claisen rearrangement: Booker-Milburn, K.; Fedouloff, M.;
Paknoham, S.; Strachan, J.; Melville, J.; Voyle, M. Tetrahedron Lett. 2000,
41, 4657. (w) For the singular report on catalytic enantioselective variant,
see: Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 16162.
sentative tertiary C3 reverse-prenylated oxindole 6a has been
shown to easily undergo the amide-enolate alkylation reaction
to furnish quaternary C3 reverse-prenylated oxindoles 8 and
9 (Vide infra).
Substituted phenylacetamides 3a-l were obtained in a
straightforward fashion from commercially available acids,
in good yields by the reaction of the corresponding acid
chlorides (X ) H, Br [1] or I [2]) with an amine in the
presence of DMAP (20 mol %) as a nucleophilic catalyst in
DCM. Use of either pyridine (for 3a-e) or triethylamine
(for 3f-l) as a base proved equally efficacious, while
triethylamine proving superior with aliphatic amine sub-
strates.
(8) For C3 reverse prenylation leading to isatin derivatives, see the
following. (a) Enolate-Claisen rearrangement: Malapel-Andrieu, B.; Piroelle,
S.; Merour, J.-Y. Chem. Res., Synop. 1998, 594. (b) Barbier reaction of
prenylindium reagents with isatin: Nair, V.; Ros, S.; Jayan, C.; Viji, S.
Synthesis 2003, 16, 2542. (c) Transfer hydrogenation reaction of isatin with
1,1-dimethylallene as the prenyl donor: Skucas, E.; Bower, J.; Krische, M.
J. Am. Chem. Soc. 2007, 129, 12678. (d) Grant, C. D.; Krische, M. J. Org.
Lett. 2009, 11, 4485. (e) Itoh, J.; Han, S. B.; Krische, M. J. Angew. Chem.,
Int. Ed. 2009, 48, 6313. (f) For a review on the importance of this structural
scaffold, see: Peddibhotla, S. Curr. Bioact. Compd. 2009, 5, 20.
Org. Lett., Vol. 12, No. 16, 2010
3595