4518
L. Jia et al. / Tetrahedron Letters 51 (2010) 4515–4518
2006, 575, 62–67; (c) Wang, Z.; Zhang, D.; Zhu, D. J. Org. Chem. 2005, 70, 5729–
5732; (d) Lu, H.; Xu, W.; Zhang, D.; Chen, C.; Zhu, D. Org. Lett. 2005, 7, 4629–
4632.
and dyad 2. However, the electron transfer within dyad 1 in the
presence of Pb2+/Sc3+ is more efficient than that in dyad 2 under
the same condition. The coordination with metal ions plays an
important role in facilitating the electron transfer within dyads 1
and 2. The present studies will not only enrich the TTF chemistry,
but also provide new aspect of flavin chemistry.
6. (a) Wu, H.; Zhang, D.; Su, L.; Ohkubo, K.; Zhang, C.; Yin, S.; Mao, L.; Shuai, Z.;
Fukuzumi, S.; Zhu, D. J. Am. Chem. Soc. 2007, 129, 6839–6846; (b) Wu, H.;
Zhang, D.; Zhang, G.; Zhu, D. J. Org. Chem. 2008, 73, 4271–4274; (c) Zeng, Y.;
Zhang, G.; Zhang, D.; Zhu, D. J. Org. Chem. 2009, 74, 4375–4378; (d) Wu, H.;
Zhang, D.; Zhu, D. Tetrahedron Lett. 2007, 48, 8951–8955.
7. (a)Chemistry and Biochemistry of Flavoenzymes; Müller, F., Ed.; CRC: Boca Raton,
1991; Vols. 1–3, (b) Tollin, G.. In Electron Transfer in Chemistry; Balzani, V., Ed.;
Wiley-VCH: Weinheim, 2001; Vol. 5, pp 202–231; (c) Niemz, A.; Rotello, V. M.
Acc. Chem. Res. 1999, 32, 44–52; (d) Rotello, V. M. Curr. Opp. Chem. Biol. 1999, 3,
747–751.
Acknowledgments
The present research was financially supported by the Chinese
Academy of Sciences, NSFC and State Key Basic Research Program.
8. (a) Breinlinger, E. C.; Rotello, V. M. J. Am. Chem. Soc. 1997, 119, 1165–1166; (b)
Greaves, M. D.; Rotello, V. M. J. Am. Chem. Soc. 1997, 119, 10569–10572; (c)
Kajiki, T.; Moriya, H.; Kondo, S.; Nabeshima, T.; Yano, Y. J. Chem. Soc., Chem.
Commun. 1998, 2727–2728; (d) Cuello, A. O.; Mcintosh, C. M.; Rotello, V. M. J.
Am. Chem. Soc. 2000, 122, 3517–3521; (e) Murakami, M.; Ohkubo, K.; Hasobe,
T.; Sgobba, V.; Guldi, D. M.; Wessendorf, F.; Hirsch, A.; Fukuzumi, S. J. Mater.
Chem. 2010, 20, 1457–1466; (f) Subramani, C.; Yesilbag, G.; Jordan, B. J.; Li, X.;
Khorasani, A.; Cooke, G.; Sanyal, A.; Rotello, V. M. Chem. Commun. 2010, 2067–
2069; (g) Carroll, J. B.; Jordan, B. J.; Xu, H.; Erdogan, B.; Lee, L.; Cheng, L.;
Tiernan, C.; Cooke, G.; Rotello, V. M. Org. Lett. 2005, 7, 2551–2554.
9. (a) Breinlinger, E. C.; Niemz, A.; Rotello, V. M. J. Am. Chem. Soc. 1995, 117, 5379–
5380; (b) Swenson, R. P.; Krey, G. D. Biochemistry 1994, 33, 8505–8514; (c)
Palfey, B. A.; Moran, G. R.; Entsch, B.; Ballou, D. P.; Massey, V. Biochemistry 1999,
38, 1153–1158.
Supplementary data
Supplementary data associated (Synthesis and characterization;
absorption and ESR spectra; cyclic voltammogram) with this article
References and notes
10. (a) Breinlinger, E. C.; Keenan, C. J.; Rotello, V. M. J. Am. Chem. Soc. 1998, 120,
8606–8609; (b) Palfey, B.; Moran, G.; Entsch, B.; Ballou, D.; Massey, V.
Biochemistry 1999, 38, 1153–1158.
11. (a) Hemmerich, P.; Lauterwein, J. In The Structure and Reactivity of Flavin-
Metal Complexes, in Inorganic Biochemistry; Eichhorn, G. L., Ed.; Elsevier:
Amsterdam, 1973; pp 1168–1190; (b) Fukuzumi, S. Bull. Chem. Soc. Jpn.
1997, 70, 1–28; (c) Fukuzumi, S.; Kojima, T. J. Biol. Inorg. Chem. 2008, 13,
321–333; (d) Fukuzumi, S.; Ohkubo, K. Coord. Chem. Rev. 2010, 254, 372–
385. and reference herein.
12. (a) Fukuzumi, S.; Yasui, K.; Suenobu, T.; Ohkubo, K.; Fujitsuka, M.; Ito, O. J. Phys.
Chem. A 2001, 105, 10501–10510; (b) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am.
Chem. Soc. 1985, 107, 3020–3027; (c) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J.
Chem. Soc., Perkin Trans. 2 1986, 25–29; (d) Fukuzumi, S.; Tanii, K.; Tanaka, T. J.
Chem. Soc., Chem. Commun. 1989, 816–818.
1. (a) Bryce, M. R. J. Mater. Chem. 2000, 10, 589–598; (b) Segura, J. L.; Martín, N.
Angew. Chem., Int. Ed. 2001, 40, 1372–1409; (c) Pease, A. R.; Jeppesen, J. O.;
Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433–
444; (d) Jeppesen, J.; Nielsen, M.; Becher, J. Chem. Rev. 2004, 104, 5115–5132;
(e) Martín, N.; Sánchez, L.; Herranz, M. A.; Illescas, B.; Guldi, D. Acc. Chem. Res.
2007, 40, 1015–1024; (f) Canevet, D.; Salle, M.; Zhang, G.; Zhang, D.; Zhu, D.
Chem. Commun. 2009, 2245–2269; (g) Stoddart, J. Chem. Soc. Rev. 2009, 38,
1802–1820. and reference therein.
2. (a) Gautier, N.; Dumur, F.; Lloveras, V.; Vidal-Gancedo, J.; Veciana, J.; Rovira, C.;
Hudhomme, P. Angew. Chem., Int. Ed. 2003, 42, 2765–2768; (b) Perepichka, D.
F.; Bryce, M. R.; Pearson, C.; Petty, M. C.; McInnes, E. J. L.; Zhao, J. P. Angew.
Chem., Int. Ed. 2003, 42, 4636–4639; (c) Molina-Ontoria, A.; Fernández, G.;
Wielopolski, M.; Atienza, C.; Sánchez, L.; Gouloumis, A.; Clark, T.; Martin, N.;
Guldi, D. J. Am. Chem. Soc. 2009, 131, 12218–12229.
3. (a) Jia, C.; Liu, S.; Tanner, C.; Leiggener, C.; Neels, A.; Sanguinet, L.; Levillain, E.;
Leutwyler, S.; Hauser, A.; Decurtins, S. Chem. Eur. J. 2007, 13, 3804–3812; (b)
Dolder, S.; Liu, S.; Derf, F.; Sallé, M.; Neels, A.; Decurtins, S. Org. Lett. 2007, 19,
3753–3756; (c) Feng, Y.; Zhang, Q.; Tan, W.; Zhang, D.; Tu, Y.; Agren, H.; Tian, H.
Chem. Phys. Lett. 2008, 455, 256–260; (d) Jaggi, M.; Blum, C.; Dupont, N.; Grilj, J.;
Liu, S.; Hauser, J.; Hauser, A.; Decurtins, S. Org. Lett. 2009, 11, 3096–3099; (e)
Andersson, A.; Diederich, F.; Nielsen, M. Org. Biomol. Chem. 2009, 7, 3474–3480;
(f) Balandier, J.; Chas, M.; Dron, P.; Goeb, S.; Canevet, D.; Belyasmine, A.; Allain,
M.; Sallé, M. J. Org. Chem. 2010, 75, 1589–1599.
4. (a) Li, H.; Jeppsesen, J. O.; Levillain, E.; Becher, J. Chem. Commun. 2003, 846–
847; (b) Zhang, G.; Zhang, D.; Guo, X.; Zhu, D. Org. Lett. 2004, 6, 1209–1212; (c)
Leroy-Lhez, S.; Baffreau, J.; Perrin, L.; Levillain, E.; Allain, M.; Blesa, M.;
Hudhomme, P. J. Org. Chem. 2005, 70, 6313–6320; (d) Leroy-Lhez, S.; Perrin, L.;
Baffreau, J.; Hudhomme, P. C.R. Chim. 2006, 9, 240–246; (e) Delahaye, S.; Loosli,
C.; Liu, S.; Decurtins, S.; Labat, G.; Neels, A.; Loosli, A.; Ward, T. R.; Hauser, A.
Adv. Funct. Mater. 2006, 16, 286–295; (f) Fang, C.; Zhu, Z.; Sun, W.; Xu, C.; Yan,
C. New J. Chem. 2007, 31, 580–586.
13. Guo, X.; Zhang, D.; Zhang, H.; Fan, Q.; Xu, W.; Ai, X.; Fan, L.; Zhu, D. Tetrahedron
2003, 59, 4843–4850.
14. Characterization data for dyad 1: 1H NMR (400 MHz, CDCl3): d 8.49 (1H, s), 8.03
(1H, s), 7.74 (1H, s), 6.40 (1H, br), 4.93 (2H, t, J = 5.26 Hz), 4.02 (2H, t,
J = 5.30 Hz), 3.65–3.60 (4H, m), 3.54 (6H, d, J = 2.73 Hz), 2.92 (2H, t, J = 6.44 Hz),
2.80 (4H, t, J = 6.96 Hz), 2.55 (3H, s), 2.45 (3H, s), 1.64–1.60 (4H, m), 1.44–1.36
(4H, m,), 1.33–1.26 (8H, m), 0.89 (6H, t, J = 6.52). 13C NMR (100 MHz, CDCl3): d
159.52, 154.98, 150.31, 148.00, 137.05, 135.94, 135.00, 132.30, 132.20, 127.86,
127.68, 126.47, 122.97, 116.91, 113.30, 70.91, 70.59, 70.55, 70.48, 69.73, 67.98,
45.81, 36.28, 35.24, 31.31, 29.71, 28.20, 22.53, 21.55, 19.53, 14.02. HR-MS(EI):
calcd for C38H52N4O5S7 868.1983; found, 868.1989.
15. Characterization data for dyad 2: 1H NMR (400 MHz, CDCl3): d 8.42 (1H, s), 8.07
(1H, s), 7.38 (1H, s), 4.70 (2H, br), 2.81–2.77 (6H, m), 2.57 (3H, s), 2.46 (3H, s),
1.93–1.85 (2H, m), 1.88–1.86 (2H, m), 1.64–1.62 (2H, m), 1.41–1.32 (4H, m),
1.29–1.25 (12H, m), 0.88 (6H, t, J = 6.56).13C NMR (100 MHz, CDCl3): 159.73,
155.54, 150.28, 148.60, 137.35, 136.34, 135.18, 133.11, 131.20, 115.46, 45.27,
36.54, 31.52, 29.91, 29.57, 29.29, 28.42, 28.23, 26.87, 25.71, 22.90, 22.75, 22.02,
19.76, 14.24, 14.06. HR-MS(EI): calcd for
778.1672.
C35H46N4O2S7, 778.1666; found,
5. (a) Li, X.; Zhang, G.; Ma, H.; Zhang, D.; Li, J.; Zhu, D. J. Am. Chem. Soc. 2004, 126,
11543–11548; (b) Zheng, X.; Sun, S.; Zhang, D.; Ma, H.; Zhu, D. Anal. Chim. Acta