precursors.10-12 Each of these approaches represents an
important advance toward the objective of a general method
for the synthesis of substituted thiophenes; each of them,
however, suffers from significant limitations in terms of harsh
conditions, low yields, expensive catalyst, or difficult
purification. Thus, new and efficient methodologies for the
construction of substituted thiophenes are still desirable.
Metal-catalyzed C-S bond formations have played an
important role in organosulfur chemistry.13 With the renais-
sance of Ullmann coupling in the past few years,14 the
copper-catalyzed cross-coupling reactions of thiols and aryl
halides have been demonstrated to be a powerful tool in the
formation of aryl C-S bonds.15 More recently, this meth-
odology was successfully extended to the synthesis of vinyl
sulfides by coupling of thiols with vinyl halides either in
intermolecular or intramolecular manner.16,17 It could be
envisioned that if a tandem vinylation could proceed between
an inorganic sulfide and a 1,4-dihalo-1,3-diene via an
intermolecular/intramolecular process, it might provide a
straightforward route for the synthesis of thiophene deriva-
tives. However, vinyl C-S cross-coupling reactions with
inorganic sulfides have rarely been reported,18 to the best of
our knowledge, despite one of the principal methods of
forming C-heteroatom bonds. These results have led us to
investigate the participation of K2S in C-S cross-coupling
reactions. Herein we would like to describe a copper-
catalyzed double alkenyl C-S bond formation by the reaction
of (1Z,3Z)-1,4-diiodo-1,3-dienes with potassium sulfide,
thereby allowing for the synthesis of a wide range of
structurally diverse thiophenes including alkyl-substituted
electron-rich thiophenes and silyl-substituted thiophenes
(Scheme 1).
Scheme 1. Retrosynthetic Analysis of Thiophene Core
(10) (a) Paal, C. Ber. Dtsch. Chem. Ges. 1885, 18, 367. (b) Knorr, L.
Ber. Dtsch. Chem. Ges. 1885, 18, 299. (c) Tronchet, J. M. J.; Bonenfant,
A. P. HelV. Chim. Acta 1981, 64, 2322. (d) Barton, T. J.; Zika, R. G. J.
Org. Chem. 1970, 35, 1279
.
(11) (a) Gewald, K. Angew. Chem. 1961, 73, 114. (b) Mckibben, B. P.;
Cartwright, C. H.; Castelhano, A. L. Tetrahedron Lett. 1999, 40, 5471. (c)
Castanedo, G. M.; Sutherlin, D. P. Tetrahedron Lett. 2001, 42, 7181. (d)
Hoener, A. P. F.; Henkel, B.; Gauvin, J.-C. Synlett 2003, 63. (e) Zhang,
1,4-Diiodo-1,3-diene 1a, which was readily prepared in a
one-pot procedure from the coupling of two alkynes with a
low-valent metal complex followed by diiodonation,19a was
used as the model substrate for the optimization of reaction
conditions (Scheme 2). The results are summarized in Table
H.; Yang, G.; Chen, J.; Chen, Z. Synthesis 2004, 3055
.
(12) (a) Wang, Y.; Huang, J.; Chai, Y.; Liu, Q.; Liang, Y.; Dong, D.
J. Comb. Chem. 2008, 10, 511. (b) Wang, Y.; Dong, D.; Yang, Y.; Huang,
J.; Ouyang, Y.; Liu, Q. Tetrahedron 2007, 63, 2724. (c) Kaleta, Z.;
Makowski, B. T.; Soos, T.; Dembinski, R. Org. Lett. 2006, 8, 1625. (d)
Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45,
4473. (e) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org.
Chem. 2005, 5277. (f) Moghaddam, F. M.; Bionee, H. Z. Tetrahedron 2004,
60, 6085. (g) Gabriele, B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351.
(h) Fazio, A.; Gabriele, B.; Salerno, G.; Destri, S. Tetrahedron 1999, 55,
485. (i) Ong, C. W.; Chen, C. M.; Wang, L. F.; Shieh, P. C. Tetrahedron
Lett. 1998, 39, 9191. (j) Stephensen, H.; Zaragoza, F. J. Org. Chem. 1997,
Scheme 2. Cu-Catalyzed Tandem C-S Bond-Forming
Reactions of 1,4-Dihalo-1,3-dienes 1a
62, 6096. (k) Chen, J.; Song, Q.; Xi, Z. Tetrahedron Lett. 2002, 43, 3533
(13) Kondo, T.; Mitsudo, T.-a. Chem. ReV. 2000, 100, 3205.
.
(14) For reviews, see: (a) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. ReV. 2004, 248, 2337. (c) Dehli, J. R.; Legros, J.; Bolm, C. Chem.
Commun. 2005, 973. (d) Chemler, S. R.; Fuller, P. H. Chem. Soc. ReV.
2007, 36, 1153. (e) Evano, G.; Blanchard, N.; Toumi, M. Chem. ReV. 2008,
108, 3054.
(15) (a) Xu, H.-J.; Zhao, X.-Y.; Deng, J.; Fu, Y.; Feng, Y.-S. Tetrahedron
Lett. 2009, 50, 434. (b) Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.;
van Koten, G. J. Org. Chem. 2008, 73, 5625. (c) Rout, L.; Saha, P.; Jammi,
S.; Punniyamurthy, T. Eur. J. Org. Chem. 2008, 640. (d) Rout, L.; Sen,
T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583. (e) Carril,
M.; SanMartin, R.; Dom´ınguez, E.; Tellitu, I. Chem.sEur. J. 2007, 13,
5100. (f) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863. (g) Kumar Verma,
A.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199. (h) Chen,
Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609. (i) Deng, W.; Zou, Y.; Wang,
Y.-F.; Liu, L.; Guo, Q.-X. Synlett 2004, 1254. (j) Naus, P.; Leseticky, L.;
Smrcek, S.; Tislerova, I.; Sticha, M. Synlett 2003, 2117. (m) Bates, C. G.;
Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803. (n) Kwong,
F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517. (o) Palomo, C.; Oiarbide,
M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000, 41, 1283. (p)
Kalinin, A. V.; Bower, J. F.; Riebel, P.; Snieckus, V. J. Org. Chem. 1999,
64, 2986. (q) Pinchart, A.; Dallaire, C.; Gingras, M. Tetrahedron Lett. 1998,
39, 543.
1. Substrate 1a was first subjected to the following typical
conditions for Ullmann coupling: 10 mol % of CuI, 20 mol
% of 1,10-phenanthroline (A), toluene as solvent, at 110 °C
for 24 h. No reaction occurred (entry 1). When the reaction
was carried out in acetonitrile, at 110 °C for 24 h, the
expected coupling product 2a was achieved in 70% yield
along with 22% of 1a remained (entry 2). Prolonging the
reaction time to 48 h did not help (entry 3). However, when
the reaction was carried out in acetonitrile at 140 °C for 24 h,
the expected coupling product 2a was achieved in 99% yield
(entry 11). We screened several ligands. Surprisingly, all of
the ligands screened (A-H) (Figure 1) gave similar results
(entries 2, 4-10). These results let us suspect that the ligands
(16) Intercoupling of thiols with vinyl halides. Cu-catalyzed, see: (a)
Jiang, B.; Tian, H.; Huang, Z.-G.; Xu, M. Org. Lett. 2008, 10, 2737. (b)
Kabir, M. S.; Linn, M. L. V.; Monte, A.; Cook, J. M. Org. Lett. 2008, 10,
3363. (c) Bates, C. G.; Saejueng, P.; Doherty, M. Q.; Venkataraman, D.
Org. Lett. 2004, 6, 5005. (d) Wang, Z.; Mo, H.; Bao, W. Synlett 2007, 91.
(e) Zheng, Y.; Du, X.; Bao, W. Tetrahedron Lett. 2006, 47, 1217. Pd-
catalyzed, see: (f) Lee, J.-Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413. (g)
Li, G. Y. J. Org. Chem. 2002, 67, 3643. (h) Murahashi, S.-I.; Yamamura,
M.; Yanagisawa, K.-i.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.
Ni-catalyzed, see: (j) Cristau, H. J.; Chabaud, B.; Labaudiniere, R.; Christol,
(17) Intracoupling of thiols with vinyl halides. Cu-catalyzed, see: (a)
Zhao, Q.; Li, L.; Fang, Y.; Sun, D.; Li, C. J. Org. Chem. 2009, 74, 459.
Pd-catalyzed, see: (b) Bryan, C. S.; Braunger, J. A.; Lautens, M. Angew.
Chem., Int. Ed. 2009, 48, 7064.
(18) Braye, E. H.; Hu¨bel, W.; Caplier, I. J. Am. Chem. Soc. 1961, 83,
4406.
H. J. Org. Chem. 1986, 51, 875
.
Org. Lett., Vol. 12, No. 17, 2010
3931