synthetic value by post-transformations involving the amido
functionality,7,8 remained unsolved. This limitation is due to
the lack of efficient activation modes of these peculiar sub-
strates. According to mechanistic studies on proton exchange
in amides and related compounds,9 β-ketoamides are better
represented under their imidic acid form that could constitute
a new activation mode of these unexplored potential pronu-
cleophiles in Michael addition (Scheme 1).
Table 1. Screening of Catalysts for the Organocatalytic Con-
jugate Addition of β-Ketoamide 1a to Methylvinylketone (2a)a
Scheme 1. Equilibrium between Amide and Acid Imidic Forms
time
(h)
temp
conversionb
(%)
ee
entry
catalyst
(°C)
(%)c
Moreover, based on the seminal works from Miller’s
group,10 the presence of the amido moiety will result in a
favorable cooperative effect in the organization of the
transition state for efficient enantiocontrol of the reaction.
Based on our precedent developments in ketoamide
reactivity11 and organocatalytic conjugate additions,12
we present these unprecedented achievements under
thiourea-based bifunctional catalysis,13 for the enantiose-
lective construction of functionalized all-carbon qua-
ternary stereocenters from R-substituted β-ketoamides as
pronucleophiles.14 Also, the synthetic advantage of the
additionalamide functionisillustratedthrough anefficient
enantioselective domino Michael/spirolactamization se-
quence leading to chiral scaffolds of high synthetic interest.
To initiate our study, we selected the conjugate addition
of β-ketoamide 1a to methylvinylketone (2a) in the pre-
sence of 10 mol % of various organocatalysts 3aꢀh, as a
test experiment (Table 1).
1
3ad
3bd
3c
3d
3e
3f
96
144
20
20
20
20
20
20
20
0
20e
0
ꢀ
2
No reaction
100
3
35
73
32
87
83
79
75
80
4
24
100
5
168
48
100
6
7
100
3f
48
100
8
3f
48
ꢀ20
20
20
100
9
3g
3h
48
100
10
48
100
a A solution of 1a (1 equiv), 2a (2 equiv), and catalyst 3 (10 mol %) in
toluene (0.05 M) was stirred until full conversion. b Determined by TLC
analysis. c Determined by HPLC on a chiral stationary phase. d Catalyst
loading 20 mol %. e Determined by 1H NMR.
Efficient in the case of R-unsubstituted β-amidoesters,8
the (S)-proline derivatives 3a and 3b either gave a very low
conversion with no enantioselection or failed in producing
the desired Michael adduct (entries 1 and 2), ruling out a
possible mechanism involving enamine or iminium inter-
mediates.15 On the contrary, H-bonding activation with
bifunctional catalysts 3cꢀh led to complete conversion and
moderate to good ee’s (entries 3ꢀ10). The Takemoto
ThioUrea Catalyst16 (TUC, 3f) proved to be the most
promising, giving the adduct with 87% ee after 48 h at rt
(entry 6). It is noteworthy that the presence of a tertiary
amine inthe structureofthe catalystiscrucial, since 3ewith
a less basic appended primary amine provided the desired
product with decreased efficiency and selectivity (entry 5).
Unfortunately, lowering the temperature to 0 or ꢀ20 °C
did not improve the enantioselectivity of the reaction
(entries 7 and 8), and cinchona alkaloids 3c and 3d or their
more elaborated thiourea derivatives17 3g and 3h revealed
to be less efficient than the TUC 3f (entries 3, 4, 9, and 10).
(7) Pilling, A. W.; Boehmer, J.; Dixon, D. J. Angew. Chem., Int. Ed.
2007, 46, 5428. Yang, T.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc.
€
2007, 129, 12070. Pilling, A. W.; Bohmer, J.; Dixon, D. J. Chem.
Commun. 2008, 832.
(8) Very recently, R-unsubstituted β-amidoesters have been proposed
as pronucleophiles leading to the creation of a tertiary stereogenic
ꢀ
center: Franzen, J.; Fisher, A. Angew. Chem., Int. Ed. 2009, 48, 787.
ꢀ
Zhang, W.; Franzen, J. Adv. Synth. Catal. 2010, 352, 499. Valero, G.;
Schimer, J.; Cisarova, I.; Vesely, J.; Moyano, A.; Rios, R. Tetrahedron
Lett. 2009, 50, 1943. Jin, Z.; Wang, X.; Huang, H.; Liang, X.; Ye, J. Org.
Lett. 2011, 13, 564.
(9) Perrin, C. L.; Dwyer, T. M.; Rebek, J., Jr.; Duff, R. J. J. Am.
Chem. Soc. 1990, 112, 3122 and references therein.
(10) Horstmann, T. E.; Guerin, D. J.; Miller, S. J. Angew. Chem., Int.
Ed. 2000, 39, 3635. Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J. Angew.
Chem., Int. Ed. 2001, 40, 2824. Jakobsche, C. E.; Peris, G.; Miller, S. J.
Angew. Chem., Int. Ed. 2008, 47, 6707.
(11) Sanchez Duque, M. M.; Allais, C.; Isambert, N.; Constantieux,
T.; Rodriguez, J. Top. Heterocycl. Chem. 2010, 23, 227 and references
cited there in.
ꢁ
(12) Bonne, D.; Salat, L.; Dulcere, J.-P.; Rodriguez, J. Org. Lett.
ꢁ
2008, 10, 5409. Raimondi, W.; Lettieri, G.; Dulcere, J.-P.; Bonne, D.;
Rodriguez, J. Chem. Commun. 2010, 46, 7247.
(15) Bartoli, G.; Melchiore, P. Synlett 2008, 1759.
(16) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y.
(13) Connon, S. J. Chem. Commun. 2008, 2499. Zhang, Z.; Schreiner,
P. R. Chem. Soc. Rev. 2009, 38, 1187. Connon, S. J. Synlett 2009, 354.
(14) For isolated examples of enantioselective addition of an
R-substituted-β-amidoester to a nitroolefin, see: Jakubec, P.; Helliwell,
M.; Dixon, D. J. Org. Lett. 2008, 10, 4267. Jakubec, P.; Cockfield, D. M.;
Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 16632.
ꢀ
J. Am. Chem. Soc. 2005, 127, 119. Hamza, A.; Schubert, G.; Soos, T.;
ꢀ
Papai, I. J. Am. Chem. Soc. 2006, 128, 13151.
(17) Cinchona Alkaloids in Synthesis and Catalysis; Song, C. E., Ed.;
Wiley-VCH: Weinheim, 2009. Marcelli, T.; Hiemstra, H. Synthesis 2010,
1229.
Org. Lett., Vol. 13, No. 13, 2011
3297