M. Amati, S. Belviso, M. D’Auria, F. Lelj, R. Racioppi, L. Viggiani
FULL PAPER
dron 1992, 48, 9315–9322; h) M. Herrnreiter, J. Kagan, X.
Chen, K. Y. Lau, M. D’Auria, A. Vantaggi, Photochem. Pho-
tobiol. 1993, 58, 49–52; i) M. D’Auria, Tetrahedron Lett. 1994,
35, 3151–3154; j) M. D’Auria, G. Mauriello, Photochem. Pho-
tobiol. 1994, 60, 542–545; k) M. D’Auria, J. Photochem. Pho-
tobiol. A: Chem. 1995, 91, 187–192; l) M. D’Auria, E. De Luca,
G. Mauriello, R. Racioppi, Synth. Commun. 1999, 29, 35–42.
DFT results from the Gaussian03 program were obtained at the
B3LYP/6-31G(d,p) level of theory. For compounds 11 and 13, the
basis set accuracy was tested by using the 6-311G(2d,p) basis set.
No significant changes in the description of the geometries and
excited states were observed in comparison with the 6-31G(d,p)
basis set.
[5]
L. R. Beard, F. D. Colon, T. K. Song, P. J. A. Davies, D. M.
Kochhar, R. A. S. Chandraratna, J. Med. Chem. 1996, 39,
3556–3563.
M. Fong, W. J. Janowski, R. H. Prager, M. R. Taylor, Aust. J.
Chem. 2004, 57, 599–604.
M. Muraoka, T. Yamamoto, K. Enomoto, T. Takeshima, J.
Chem. Soc. Perkin Trans. 1 1989, 1241–1252.
R. M. Paton, F. M. Robertson, J. F. Ross, J. Crosby, J. Chem.
Soc. Perkin Trans. 1 1985, 1517–1521.
R. E. Wasylishen, H. M. Hutton, Can. J. Chem. 1977, 55, 619–
624.
V. J. Majo, J. Prabhakaran, J. J. Mann, J. S. Dileep Kumar, Tet-
rahedron Lett. 2003, 44, 8535–8537.
J. P. Catteau, A. Lablache-Combier, A. Pollet, J. Chem. Soc. C
1969, 1018.
Geometry optimizations were performed with default settings on
geometry convergence (gradients and displacements), integration
grid and electronic density (SCF) convergence. Redundant coordi-
nates were used for the geometry optimization carried out with the
Gaussian03 program. Analytical evaluation of the second-energy
derivative matrix w. room temp. Cartesian coordinates (Hessian
matrix) at the B3LYP/6-31G(d,p) level of theory confirmed the na-
ture of the minima on the energy surface associated with the opti-
mized structures.
[6]
[7]
[8]
[9]
Excited-state geometry optimizations were performed with the
B3LYP xc functional and DZP basis set, as provided by the Tur-
bomole 5.9 package. The Turbomole 5.9 default parameters were
used for SCF, geometry optimization and integration grids. Geo-
metries and UV/Vis spectra were computed to verify the
Gaussian03 predictions.
[10]
[11]
[12]
[13]
[14]
J. W. Pavlik, C. R. Pandit, C. J. Samuel, A. C. Day, J. Org.
Chem. 1993, 58, 3407–3410.
G. Vernin, J.-C. Poite, J. Metzger, J.-P. Aune, H. J. M. Dou,
Figures 1 and 3 were produced by using the Molekel 4.3 pro-
gram.[36]
Bull. Soc. Chim. Fr. 1971, 1103–1104.
a) G. Vernin, R. Jauffred, C. Ricard, H. J. M. Dou, J. Metzger,
J. Chem. Soc. Perkin Trans. 2 1972, 1145–1150; b) C. Riou, G.
Vernin, H. J. M. Dou, J. Metzger, Bull. Soc. Chim. Fr. 1972,
2673–2678; c) J. W. Pavlik, P. Tongcharoensirikul, N. P. Bird,
A. C. Day, J. A. Barltrop, J. Am. Chem. Soc. 1994, 116, 2292–
2300.
Supporting Information (see also the footnote on the first page of
this article): GC–MS, 1H and 13C NMR, DEPT and computational
details.
Acknowledgments
[15]
[16]
[17]
C. Vernin, C. Riou, H. J. M. Dou, L. Bouscasse, J. Metzger, G.
Loridan, Bull. Soc. Chim. Fr. 1973, 1743–1751.
We thank the Italian Ministry of University and Research (MUR)
(Project no. PRIN 2007) and the University of Basilicata for finan-
cial support.
C. Riou, J. C. Poite, G. Vernin, J. Metzger, Tetrahedron 1974,
30, 879–898.
a) M. Kojima, M. Maeda, J. Chem. Soc. C 1970, 386–387; b)
M. Maeda, M. Kojima, J. Chem. Soc. Perkin Trans. 1 1978,
685–692.
[1] a) R. Antonioletti, M. D’Auria, A. De Mico, G. Piancatelli, A.
Scettri, Tetrahedron 1985, 41, 3441–3446; b) R. Antonioletti,
M. D’Auria, A. De Mico, G. Piancatelli, A. Scettri, J. Chem.
Soc. Perkin Trans. 1 1985, 1285–1288; c) M. D’Auria, R. Anto-
nioletti, A. De Mico, G. Piancatelli, Heterocycles 1986, 24,
1575–1578; d) R. Antonioletti, M. D’Auria, F. D’Onofrio, G.
Piancatelli, A. Scettri, J. Chem. Soc. Perkin Trans. 1 1986,
1755–1758; e) M. D’Auria, A. De Mico, F. D’Onofrio, G. Pian-
catelli, J. Chem. Soc. Perkin Trans. 1 1987, 1777–1780; f) M.
D’Auria, A. De Mico, F. D’Onofrio, D. Mendola, G. Piancat-
elli, J. Photochem. Photobiol. A: Chem. 1989, 47, 191–201; g)
M. D’Auria, Gazz. Chim. Ital. 1994, 124, 195–197; h) M. D’Au-
ria, in: Targets in Heterocyclic Systems, Chemistry and Proper-
ties (Eds.: O. A. Attanasi, D. Spinelli), Italian Society of Chem-
istry, Rome, 1997, vol. 1, pp. 277–302; i) M. D’Auria, E.
De Luca, G. Mauriello, R. Racioppi, G. Sleiter, J. Chem. Soc.
Perkin Trans. 1 1997, 2369–2373; j) M. D’Auria, E. De Luca,
G. Mauriello, R. Racioppi, J. Chem. Soc. Perkin Trans. 1 1998,
271–273.
[18]
[19]
[20]
I. Saito, T. Morii, Y. Okamura, S. Mori, K. Yamaguchi, T.
Matsuura, Tetrahedron Lett. 1986, 27, 6385–6388.
I. Saito, T. Morii, S. Mori, K. Yamaguchi, T. Matsuura, Tetra-
hedron Lett. 1988, 29, 3963–3966.
a) M. D’Auria, in: Targets in Heterocyclic Systems, Chemistry
and Properties, (Eds: O. A. Attanasi, D. Spinelli), Italian Soci-
ety of Chemistry, Rome, 1999, vol. 2, pp. 233–279; b) M. D’Au-
ria, Heterocyles 1999, 50, 1115–1136; c) M. D’Auria, J. Org.
Chem. 2000, 65, 2494–2498; d) M. D’Auria, Adv. Heterocycl.
Chem. 2001, 79, 41–88; e) M. D’Auria, J. Photochem. Pho-
tobiol. A: Chem. 2002, 149, 31–37; f) M. D’Auria, Tetrahedron
2002, 58, 8037–8042; g) M. D’Auria, R. Racioppi, Lett. Org.
Chem. 2004, 1, 12–19; h) S. Buscemi, M. D’Auria, A. Pace, I.
Pibiri, N. Vivona, Tetrahedron 2004, 60, 3243–3249.
a) M. La Deda, I. Aiello, A. Grisolia, M. Ghedini, M. Amati,
F. Lelj, Dalton Trans. 2006, 390–399; b) A. Crispini, I. Aiello,
M. La Deda, I. De Franco, M. Amati, F. Lelj, M. Ghedini,
Dalton Trans. 2006, 5124–5134; c) M. Amati, S. Belviso, P. L.
Cristinziano, C. Minichino, F. Lelj, J. Phys. Chem. A 2007, 111,
13403–13414; d) M. Ghedini, T. Pugliese, M. La Deda, N.
Godbert, I. Aiello, M. Amati, S. Belviso, F. Lelj, G. Accorsi,
F. Barigelletti, Dalton Trans. 2008, 4303–4318; e) T. Pugliese,
N. Godbert, I. Aiello, M. La Deda, M. Ghedini, M. Amati, S.
Belviso, F. Lelj, Dalton Trans. 2008, 6563–6572.
[21]
[2] M. DЈAuria, C. Distefano, F. D’Onofrio, G. Mauriello, R. Ra-
cioppi, J. Chem. Soc. Perkin Trans. 1 2000, 3513–3518.
[3] M. A. Ciufolini, Y.-C. Shen, Org. Lett. 1999, 1, 1843–1846.
[4] a) M. D’Auria, A. De Mico, F. D’Onofrio, G. Piancatelli, Gazz.
Chim. Ital. 1986, 116, 747–748; b) M. D’Auria, A. De Mico, F.
D’Onofrio, G. Piancatelli, Synth. Commun. 1987, 17, 491–497;
c) M. D’Auria, A. De Mico, F. D’Onofrio, G. Piancatelli, J.
Org. Chem. 1987, 52, 5243–5247; d) M. D’Auria, F. D’Onofrio,
Gazz. Chim. Ital. 1988, 118, 633–635; e) M. D’Auria, A.
De Mico, F. D’Onofrio, G. Piancatelli, Gazz. Chim. Ital. 1989,
119, 201–202; f) M. D’Auria, A. Vantaggi, Photochem. Pho-
tobiol. 1991, 53, 181–184; g) M. D’Auria, D. Tofani, Tetrahe-
[22]
N. J. Turro, Modern Molecular Photophysics, University Sci-
ence Books, 1991.
C. F. Foote, Photochem. Photobiol. 1991, 54, 659.
K. Gollnick, A. Schnatterer, Photochem. Photobiol. 1986, 43,
365–378.
[23]
[24]
3426
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 3416–3427