M. Poláková et al. / Carbohydrate Research 345 (2010) 1339–1347
1347
4.7.2. 2-Cyclohexylethyl 6-deoxy-a-D-mannopyranoside (31)
Acknowledgments
Yield 32.5 mg, 87%, colorless oil. [
a]
+51.0 (c 0.6, MeOH).
D
HRMS: m/z: calcd for C14H26O5Na [M+Na]+: 297.1678; found:
This work was supported by the APVV-51-046505 and
VEGA-2/0199/09 grants, the Slovak State Programme Project
No. 2003SP200280203, and by the European Commission under
contract LSHP-CT-2005-018923‘NM4TB‘. Drs. Jana Korduláková
and Vladimír Puchart are appreciated for helpful discussion.
297.1691.
1H and 13C NMR data for compounds 26–31 are in Tables 5 and
6.
ˇ
Dr. Iveta Uhliariková and Mrs. Anna Karovicová are acknowl-
4.8. Octyl
(32)
a-D-mannopyranosyl-(1?6)-a-D-mannopyranoside
edged for technichal assistance in NMR analyses. The authors
thank Dr. Ray Marshall for his kind help in the preparation of
this paper.
The disaccharide 32 was obtained after coupling reaction fol-
lowed by stepwise deprotection. Data are in agreement with those
previously reported.13 13C NMR (100 MHz, CD3OD): d 101.7, 101.5
(C-1, C-10), 74.5, 73.2, 73.0, 72.8 (C-3, C-30, C-5, C-50), 72.3, 72.2 (C-
2, C-20), 68.7 (3ꢁ) (OCH2 octyl, C-4, C-40), 67.5 (C-6), 63.0 (C-60),
33.2, 30.8, 30.7, 30.6, 27.6, 23.9 (6 ꢁ CH2 octyl), 14.6 (CH3 octyl).
Supplementary data
Supplementary data associated with this article can be found, in
References
4.9. In vitro ManT assays and identification of the products
1. Briken, V.; Porcelli, S. A.; Besra, G. S.; Kremer, L. Mol. Microbiol. 2004, 53, 391–
403.
The enzymatically active membrane and cell wall fractions of M.
smegmatis mc2155, which were grown in the nutrient broth (EM
Science) were prepared essentially as described.30 Reaction mix-
tures contained 1.5 mg of membrane protein and 1 mg of cell wall
2. Hill, D. L.; Ballou, C. E. J. Biol. Chem. 1966, 241, 895–902.
3. Brennan, P.; Ballou, C. E. J. Biol. Chem. 1967, 242, 3046–3056.
4. Takayama, K.; Goldman, D. S. J. Biol. Chem. 1970, 245, 6251–6257.
5. Schultz, J. C.; Takayama, K. Arch. Biochem. Biophys. 1976, 177, 62–73.
6. Kaur, D.; Guerin, M. E.; Skovierová, H.; Brennan, P. J.; Jackson, M. Adv. Appl.
Microbiology 2009, 69, 23–78.
7. Yokoyama, K.; Ballou, C. E. J. Biol. Chem. 1989, 264, 21621–21628.
8. Brown, J. R.; Field, R. A.; Barker, A.; Guy, M.; Grewal, R.; Khoo, K.-H.; Brennan, P.
J.; Besra, G. S.; Chatterjee, D. Bioorg. Med. Chem. 2001, 9, 815–824.
9. Subramaniam, V.; Gurcha, S. S.; Besra, G. S.; Lowary, T. L. Bioorg. Med. Chem.
2005, 13, 1083–1094.
protein, 0.05
60 M ATP, DMSO in final concentration 0.8% (v/v), and buffer A
(50 mM MOPS pH 7.9, 10 mM MgCl2, 5 mM b-mercaptoethanol)
in the final volume of 160 L. Synthetic acceptors (lyophilized be-
l
Ci GDP-[14C]mannose (Amersham, 275 mCi/mmol),
l
l
fore use) were added from their DMSO stock solutions (0.5 M) to
achieve 4 mM final concentration. In the control assay, the DMSO
solution of the acceptor was replaced with the appropriate volume
of pure DMSO. After incubation at 37 °C for 1 h the reactions were
stopped by adding 1 mL of 96% ethanol and the products were ex-
tracted by rocking at room temperature for 15 min. 7000 ꢁ g
supernatants of two successive extractions were pooled, dried un-
der a stream of nitrogen, and subjected to n-butanol–water parti-
tioning. The resulting organic phase was recovered and the
aqueous phase was again extracted with water–saturated n-buta-
nol. The pooled butanol extracts were dried under N2 and resus-
pended in n-butanol. These crude lipid extracts were analyzed by
TLC as described below, to evaluate possible inhibitory effects of
the tested compounds on the production of the natural mannoli-
pids—PIMs and polyprenylphosphoryl mannoses in the in vitro as-
say. These radioactive natural products were removed by mild acid
and mild alkali hydrolyses to reveal the products formed from the
synthetic substrates, which are resistant to such treatments. For
mild acid hydrolysis 50% of the dried extracts were dissolved in
10. Subramaniam, V.; Gurcha, S. S.; Besra, G. S.; Lowary, T. L. Tetrahedron:
Asymmetry 2005, 16, 553–567.
11. Watt, J. A.; Williams, S. J. Org. Biomol. Chem. 2005, 3, 1982–1992.
12. Tam, P.-H.; Lowary, T. L. Carbohydr. Res. 2007, 342, 1741–1772.
13. Tam, P.-H.; Besra, G. S.; Lowary, T. L. ChemBioChem 2008, 9, 267–278.
14. Morita, Y. S.; Velasquez, R.; Taig, E.; Waller, R. F.; Patterson, J. H.; Tull, D.;
Williams, S. J.; Billman-Jacobe, H.; Conville, M. J. J. Biol. Chem. 2005, 208,
21645–21652.
15. Mishra, A. K.; Alderwick, L. J.; Rittmann, D.; Tatituri, R. V.; Nigou, J.; Gilleron,
M.; Eggeling, L.; Besra, G. S. Mol. Microbiol. 2007, 65, 1503–1517.
16. Mishra, A. K.; Alderwick, L. J.; Rittmann, D.; Wang, C.; Bhatt, A.; Jacobs, W. R.,
Jr.; Takayama, K.; Eggeling, L.; Besra, G. S. Mol. Microbiol. 2008, 68, 1595–1613.
17. Ekholm, F. S.; Poláková, M.; Pawłowicz, A. J.; Leino, R. Synthesis 2009, 4, 567–
576.
18. Poláková, M.; Roslund, M. U.; Ekholm, F. S.; Saloranta, T.; Leino, R. Eur. J. Org.
Chem. 2009, 6, 870–888.
19. For using SnCl4 as catalyst see also: (a) Hanessian, S.; Banoub, J. Carbohydr. Res.
1977, 59, 216–267; (b) Banoub, J.; Bundle, D. Can. J. Chem. 1979, 57, 2085–
2089; (c) Pathak, A. K.; El-Kattan, Y. A.; Bansal, N.; Maddry, J. A.; Reynolds, R. C.
Tetrahedron Lett. 1998, 39, 1497–1500; (d) Poláková, M.; Pitt, N.; Tosin, M.;
Murphy, P. V. Angew. Chem., Int. Ed. 2004, 43, 2518–2521; (e) Gouin, S. G.;
Pilgrim, V.; Porter, R. K.; Murphy, P. V. Carbohydr. Res. 2005, 340, 1547–1552;
(f) Murakami, T.; Hirono, T.; Sato, Y.; Furusawa, K. Carbohydr. Res. 2007, 342,
1009–1020; (g) Xue, J. L.; Cecioni, S.; He, L.; Vidal, S.; Praly, J.-P. Carbohydr. Res.
2009, 344, 1646–1653.
20. Ziegler, T.; Dettmann, R.; Duszenko, M.; Kolb, V. Carbohydr. Res. 1996, 295, 7–
23.
21. Pingel, S.; Field, R. A.; Güther, M. L. S.; Duszenko, M.; Ferguson, M. A. J. Biochem.
J. 1995, 309, 877–882.
22. Galema, S. A.; Engberts, J. F. B. N.; van Doren, H. A. Carbohydr. Res. 1997, 303,
423–434.
23. Berglund, J.; Bouckaert, J.; De Greve, H.; Knight, S. WO200589733 patent.
24. Meldal, M.; Christensen, M. K.; Bock, K. Carbohydr. Res. 1992, 235, 115–127.
25. Mizutani, T.; Kurahashi, T.; Mukarami, T.; Matsumi, N.; Ogoshi, H. J. Am. Chem.
Soc. 1997, 119, 8991–9001.
26. Chatterjee, S. K.; Nuhn, P. Chem. Commun. 1998, 1729–1730.
27. May, J. F.; Splain, R. A.; Brotschi, C.; Kiessling, L. L. Proc. Natl. Acad. Sci. USA 2009,
106, 11851–11856.
28. Bock, K.; Pedersen, J. H. J. Chem. Soc., Faraday Trans. 1 1974, 2, 293–297.
29. Oscarson, S.; Tiden, A.-K. Carbohydr. Res. 1993, 247, 323–328.
30. Mikušová, K.; Mikuš, M.; Besra, G. S.; Hancock, I.; Brennan, P. J. J. Biol. Chem.
1996, 271, 7820–7828.
50
mixtures were incubated at 60 °C for 30 min. After neutralization
with 10 L of 0.2 M NaOH, the samples were dried under a stream
of nitrogen. They were then subjected to mild alkali hydrolysis per-
formed with 150 L CHCl3–MeOH (2:1, v/v) and 150 L 0.2 M
lL of 1-propanol, and 100 lL of 20 mM HCl was added. The
l
l
l
NaOH in MeOH for 20 min at 37 °C. After neutralization with a
drop of glacial acetic acid, the mixtures were dried and subjected
to n-butanol/water partitioning. Pooled butanol extracts contain-
ing the radiolabeled products originating from the synthetic glyco-
sides were dried under N2, resuspended in n-butanol, and analyzed
by TLC on aluminum-coated Silica 60 F254 plate (Merck). The TLC
plate was developed in CHCl3–MeOH–concd NH4OH–H2O
(65:25:0.5:4; by vol.) and exposed to radiographic film (Kodak
Bio Max MR). Incorporation of the radioactive label to the products
was quantified by scraping the silica from the corresponding bands
to scintillation vials and measuring the radioactivity using 5 mL of
EcoLite(+) liquid scintillation fluid (MP Biomedicals) in the scintil-
lation counter Tri-Carb 2900 TR (Perkin–Elmer).