C O M M U N I C A T I O N S
Scheme 3
Scheme 4
Supporting Information Available: Experimental procedures and
characterization data for all new compounds and a CIF file. This
References
(1) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113.
(2) (a) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 17180. (b) Burger,
E. C.; Barron, B. R.; Tunge, J. A. Synlett 2006, 2824. (c) Trost, B. M.;
Bream, R. N.; Xu, J. Angew. Chem., Int. Ed. 2006, 45, 3109. (d) You,
S.-L.; Dai, L.-X. Angew. Chem., Int. Ed. 2006, 45, 5246. (e) Trost, B. M.;
Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343. (f) Behenna,
D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. (g) Nakamura,
M.; Hajra, A.; Endo, K.; Nakamura, E. Angew. Chem., Int. Ed. 2005, 44,
7248. (h) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2005, 44, 6924.
(3) Baechler, R. D.; Andose, J. D.; Stackhouse, J.; Mislow, K. J. Am. Chem.
Soc. 1972, 94, 8060.
that has undergone inversion and rotation (path C). Thus, we
hypothesize that the reaction is stereospecific because rotation about
the C-S bond of the sulfone (path C) is slower than reaction of
R-sulfonyl anion 3a with the palladium π-allyl complex through
path A.
(4) (a) Corey, E. J.; Kaiser, E. T. J. Am. Chem. Soc. 1961, 83, 490. (b) Corey,
E. J.; Koenig, H.; Lowry, T. H. Tetrahedron Lett. 1962, 3, 515. (c) Corey,
E. J.; Lowry, T. H. Tetrahedron Lett. 1965, 6, 803. (d) Corey, E. J.; Lowry,
T. H. Tetrahedron Lett. 1965, 6, 793. (e) Cram, D. J.; Nielsen, W. D.;
Rickborn, B. J. Am. Chem. Soc. 1960, 82, 6415. (f) Cram, D. J.; Rickborn,
B.; Knox, G. R. J. Am. Chem. Soc. 1960, 82, 6412. (g) Cram, D. J.;
Wingrove, A. S. J. Am. Chem. Soc. 1963, 85, 1100.
DFT calculations carried out at the B3LYP/6-31+G* level of
theory revealed that the lowest barrier to rotation about the R-C-S
bond is 9.9 kcal/mol, which is consistent with experimental
measurements in related systems (Scheme 4).15-17 Thus, the barrier
for allylation of the R-sulfonyl anion must be <9.9 kcal/mol or
rotation would lead to racemization. Such a low barrier is consistent
with the reaction between an ion pair of a highly nucleophilic
R-sulfonyl anion and a palladium π-allyl complex.8,18 Thus, the
stark contrast between our observations and those of Gais can be
attributed to the fact that our reaction generates the reactive
R-sulfonyl anion intermediates in the presence of highly electro-
philic π-allyl palladium electrophiles, allowing it to effect the C-C
bond formation faster than rotation.
In conclusion, we have developed a stereospecific decarboxy-
lative coupling reaction that provides access to enantioenriched
homoallylic sulfones. The enantiospecific nature of this reaction is
unique among, yet complementary to, existing decarboxylative
allylation methodologies. The stereospecificity is made possible by
the relatively high barrier for racemization of axially chiral
R-sulfonyl anions and the low barrier for their reaction with
palladium π-allyl complexes.
(5) Rozov, L. A.; Rafalko, P. W.; Evans, S. M.; Brockunier, L.; Ramig, K. J.
Org. Chem. 1995, 60, 1319.
(6) (a) Weaver, J. D.; Morris, D. K.; Tunge, J. A. Synlett 2010, 470. (b) Weaver,
J. D.; Tunge, J. A. Org. Lett. 2008, 10, 4657.
(7) Gais, H.-J.; Hellmann, G. J. Am. Chem. Soc. 1992, 114, 4439.
(8) See the Supporting Information for more details.
(9) Complete crossover was observed when two sulfonyl esters were allowed
to undergo coupling in the same flask. The interpretation of complete
crossover is ambiguous since crossover can likely occur via either the
intermediate π-allylpalladium carboxylates or the π-allylpalladium R-sul-
fonyl anion complexes.
(10) The presence of acidic protons from the carboxylic acid resulted in the
formation of the protonation product rather than the allylation product that
may be expected from (allyl)PdCl(PPh3)2
(11) Recio, A.; Tunge, J. A. Org. Lett. 2009, 11, 5630.
(12) (a) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1980, 102, 4730. (b)
Keinan, E.; Roth, Z. J. Org. Chem. 1983, 48, 1770.
(13) Unfortunately, the R-methyl-R-phenylsulfonylacetic ester of cyclohexen-
3-ol gave 78% elimination product. Thus, it could not be used for the
stereochemical test. Elimination is less problematic with an R-chloro
substitutent (see ref 6b).
(14) Analysis of the crude reaction mixture by 1H NMR spectroscopy indicated
that the mass balance of the decarboxylative allylation of 1n was made up
of elimination products.
(15) Gais, H.-J.; Hellmann, G.; Gunther, H.; Lopez, F.; Lindner, H. J.; Braun,
S. Angew. Chem., Int. Ed. 1989, 28, 1025.
(16) (a) Raabe, G.; Gais, H.-J.; Fleischhauer, J. J. Am. Chem. Soc. 1996, 118,
4622. (b) Reetz, M. T.; Hutte, S.; Goddard, R. Eur. J. Org. Chem. 1999,
2475.
(17) This barrier to rotation is in part due to loss of negative hyperconjugation
with the Ph-S σ* orbital. See: Koch, R.; Anders, E. J. Org. Chem. 1994,
59, 4529.
(18) (a) Seeliger, F.; Mayr, H. Org. Biomol. Chem. 2008, 6, 3052. (b) Kuhn,
O.; Mayr, H. Angew. Chem., Int. Ed. 1999, 38, 343.
Acknowledgment. We thank the National Institute of General
Medical Sciences (1R01GM079644) for financial support. D.K.M.
thanks the NSF-REU Program (CHE-0649246) for funding. We
thank Dr. Victor Day for X-ray crystallographic analysis.
JA104196X
9
J. AM. CHEM. SOC. VOL. 132, NO. 35, 2010 12181